首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
计算机X射线断层成像技术(CT)是利用X射线的穿透能力对物体进行扫描,所得信号经过反投影的算法而得到物体二维分布的一种成像方法,已经在医学诊断、工业探伤等领域广泛应用。但是由于实验室光源的低通量,光源点大小及其单色性等限制了其向高分辨发展,通常其分辨率在0.5mm左右。利用微焦点X射线源作为光源的显微CT分辨率可以达到微米量级,但是由于其光通量低且为非单色光,对不同样品有不同程度的束线硬化,影响了其真实分辨率。同步辐射作为一种新兴的光源有高亮度、高光子通量、高准直性、高极化性、高相干性及宽的频谱范围的特点,配合高分辨的X射线探测器,可以发展同步辐射显微CT,其分辨率可达10μm以下。利用同步辐射的高空间相干性开展位相衬度显微CT的研究,对低吸收物质也可以清晰三维成像。新建的上海光源的X射线成像及生物医学应用线站开展了三维显微CT方面的研究,经过初步试验,得到了较好的结果。  相似文献   

2.
We have developed a simple and rapid technique for measuring the action spectra for phototaxis of populations of microorganisms and applied it to halobacteria. A microscope with a dark-field condenser was used to illuminate the cell suspension in a sealed chamber with light of wavelength greater than 750 nm; in this region of the spectrum, the halobacteria show no phototactic response. A 150-micron spot of light from a xenon arc lamp, whose wavelength and intensity can be varied, was projected through the objective lens into the center of the dark field. The objective lens imaged this measuring spot through a 780-nm cut-off filter on an aperture in front of a photomultiplier. The intensity of the scattered 750-nm light, and therefore the photomultiplier current, is proportional to the number of cells in the measuring spot. A third lamp provided background light of variable wavelength and intensity through the dark-field condenser. To minimize secondary effects due to large changes in cell density, we recorded the initial changes in the photomultiplier current over 1 min after the actinic light had been switched on. By plotting the rate of change against wavelength, we obtained action spectra after the proper corrections for changes in light intensity with wavelength were applied and saturation effects were avoided.  相似文献   

3.
This paper focuses on an optical study of a Tb3+/Bi3+‐doped and Sm3+/La3+‐ doped Ca2Al2SiO7 phosphor synthesized using combustion methods. Here, Ca2Al2SiO7:Sm3+ showed a red emission band under visible light excitation but, when it co‐doped with La3+ ions, the emission intensity was further enhanced. Ca2Al2SiO7:Tb3+ shows the characteristic green emission band under near‐ultraviolet light excitation wavelengths, co‐doping with Bi3+ ions produced enhanced photoluminescence intensity with better colour tunable properties. The phosphor exhibited better phase purity and crystallinity, confirmed by X‐ray diffraction. Binding energies of Ca(2p), Al(2p), Si(2p), O(1s) were studied using X‐ray photoelectron spectroscopy. The reported phosphor may be a promising visible light excited red phosphor for light‐emitting diodes and energy conversion devices.  相似文献   

4.
A high intensity 464 nm excitable ZnWO4:Eu3+ red‐emitting phosphor for warm white lighting applications was prepared using a solid‐state reaction method by varying the dopant Eu3+ concentration. Crystalline purity and phase identification was confirmed and revealed using powder X‐ray diffraction and Rietveld refinement analysis. The surface morphology of Zn1‐xEuxWO4 (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) was examined using scanning electron microscopy (SEM) techniques. From SEM analysis, the ZnWO4:Eu3+ phosphor prepared at 1–3% molar Eu3+ concentrations exhibited a small pebble‐like morphology with a smooth surface. On increasing the molar concentration of Eu3+ to >3%, the pebble stone morphology disappeared and a large, smooth irregular polygon‐shaped granular‐like morphology was obtained. Of the higher mol% Eu3+, the 4% Eu3+‐doped ZnWO4 showed the best photoluminescence properties with high intensity and sharp excitation at 395 and 464 nm, followed by red emission centred at 615 nm with excellent CIE coordinates (x = 0.58 and y = 0.41) in the core red region. Elemental composition and chemical state analysis were carried out for the 4% Eu3+‐doped ZnWO4 phosphor using X‐ray photoelectron spectroscopy and energy dispersive X‐ray spectroscopy studies. Based on all the above analyses, the Eu3+‐doped ZnWO4 phosphor was found to be a very efficient red‐emitting phosphor under near‐UV light as well as under visible light excitation and could be used for white LED and field emissive displays applications.  相似文献   

5.
Pure and Li+‐doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X‐ray diffraction, ultraviolet‐visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X‐ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet‐visible and PL spectra revealed that Li+ activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li+ enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383–456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green‐ and blue‐emitting organic light emitting diode, PL liquid‐crystal display and solid‐state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Large are a detectors, such as those used in positron emission mammography (PEM) and scintimammography, utilize arrays of discrete semtillator elements mounted on arrays of position sensitive photomultiplier tubes (PSPMT). Scintillator elements can be packed very densely (minimizing area between elements), allowing good detection sensitivity and spatial resolution. And, while new flat panel PSPMTS have minimal inactive edges, when they are placed in arrays significant dead spaces where scintillation light is undetectable are created. To address this problem, a light guide is often placed between the detector and PSPMT array to spread scintillation light so that these gaps can be bridged. In this investigation we studied the effect of light guides of various thickness on system performance. A 10×10 element array of LYSO detector elements was coupled to the center of a 2×2 array of PSPMTs through varying thicknesses (1 to 4 mm) of UV glass. The spot size of the imaged elements and distortions in the regular square pattern of the imaged scintillator arrays were evaluated. Energy resolution was measured by placing single elements of LYSO at several locations of the PSPMT array. Spatial distortions in the images of the array were reduced by using thicker light guides (3–4 mm). Use of thicker light guides, however, resulted in reduced pixel resolution and slight degradation of energy resolution. Therefore, some loss of pixel and energy resolution will accompany the use of thick light guides (minimum of 3 mm) required for optimum identification of detector elements.  相似文献   

7.
The measurement of fluorescence lifetimes is known to be hindered by the wavelenght-dependent and photocathode area-dependent time response of photomultiplier tubes. A simple and direct method is described to minimize the effects in photomultiplier tubes for phase-modulation fluorometry. Reference fluorophores of known lifetime were used in place of the usual scattering reference. The emission wavelenghts of the reference and sample were matched by either filters or a monochromator, and the use of a fluorophore rather than a scatter decreases the differences in spatial distribution of light emanating from the reference and sample. Thus photomultiplier tube artifacts are minimized. Five reference fluorophores were selected on the basis of availability, ease of solution preparation, and constancy of lifetime with temperature and emission wavelenght. These compounds are p-terphenyl, PPO, PPD, POPOP and dimethyl POPOP. These compounds are dissolved in ethanol to give standard solutions that can be used over the temperature range from ?55 to +55°C. Purging with inert gas is not necessary. The measured phase and modulation of the reference solution is used, in conjunction with the known reference, lifetime, to calculate the actual phase and modulation of the exictation beam. The use of standard fluorophores does not require separate experiments to quantify photomultiplier effects, and does not increase the time required for the measurement of fluorescence lifetimes. Examples are presented which demonstrate the elimination of artifactual photomultiplier effects in measurements of the lifetimes of DADH (0.4 ns) and indole solutions quenched by iodide. In addition, the use of these reference solutions increases the accuracy of fluorescence lifetime measurements ranging ranging to 30 ns. We judge this method to provide more reliable lifetime measurements by the phase and modulation method. The test solutions and procedures we describe may be used by other laboratories to evaluate the performance of their phase fluorometers.  相似文献   

8.
Zinc sulfide (ZnS) doped with transition metal has been used as phosphor for various optoelectronic applications. In the present report, ZnS:Mn doped and ZnS:Mn,Ni co‐doped were prepared using chemical co‐precipitation method using polyvinyl pyrolidone as a surfactant. The structural studies were carried out using an X‐ray diffraction technique; optical studies have been performed using ultraviolet–visible light absorption and photoluminescence (PL) spectroscopy. The presences of functional groups were confirmed using Fourier transform infrared spectroscopy. The X‐ray diffraction study and Reitveld analysis confirms the formation of cubic phase with crystalline size 2–3 nm for undoped and doped ZnS nanoparticles. A novel and enhanced luminescence characteristic have been observed in PL spectra. The luminescence intensity of Mn,Ni co‐doped ZnS in the blue region is much higher of that of ZnS. The PL results indicate that the doping of Ni creates shallow trap states or luminescence centres in the forbidden energy gap, which quenches the Mn states emission. Concentration quenching has been observed in Mn‐doped ZnS nanoparticles. From CIE coordinates, it is seen that the yellow and blue light emission of ZnS:Mn,Ni co‐doped nanophosphor may be a promising candidate for display devices and phosphor converted light‐emitting diode applications.  相似文献   

9.
A new efficient phosphor, A9B(VO4)7 [A = Ca, Sr, Ba and B = La, Gd] has been synthesized by the solid‐state method at high temperature. X‐ray diffraction analysis confirmed the formation of the compound. Photoluminescence excitation measurements show that the phosphor can be efficiently excited by near‐ultraviolet light from 300 nm to 400 nm to realize emission covering the 397–647 nm region of visible spectrum. Therefore, newly synthesized novel phosphor may be useful as green‐emitting phosphor in solid‐state lighting. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In the yttrium aluminium system, the YAlO3 phosphor is a prominent host because of the yttrium aluminium ratio (1:1). Phosphor was synthesized by the solid‐state reaction method at variable concentrations of erbium (0.1–2.5 mol%). This method is suitable for large‐scale production and is a less time‐consuming method when compared with the soft synthesis method. The prepared sample was characterized by X‐ray diffraction technique and the crystallite size was calculated by Scherer's formula. Vibrational and bending analysis of prepared phosphor for optimized concentration of erbium ion is described based on the Fourier transform infrared spectroscopic technique. The photoluminescence (PL) emission spectra of prepared phosphor for variable concentrations of erbium ion were recorded and the excitation spectrum was found to be at 291 nm with three shoulder peaks at 305, 270 and 242 nm. For 291 nm excitation, the emission spectrum was found at 546 nm and 552 nm. PL intensity increased with increasing concentrations of erbium and after 2 mol% emission intensity decreased due to concentration quenching. Spectrophotometric determination of YAlO3:Er3+ is described by CIE co‐ordinates and shows an intense emission in the green region such that the prepared phosphor can act as a single host for green light emission. Thermoluminescence glow curve analysis of the YAlO3:Er3+ phosphor was recorded for different ultraviolet (UV) light exposures and gamma exposure. Different gamma doses 0.5–2 kGy show a linear response. Kinetic parameters were calculated by the peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This article reports a novel blue emission in a series of Ca12Al10.6Si3.4O32Cl5.4:Ce3+ phosphor under excitation in the near‐UV wavelength range. This phosphor was prepared using the combustion method. Here, the Ce3+ emission band is observed over a broad range of 380–550 nm, under 365 nm excitation, and is due to 5d–4f transition. The effect of a Li+ charge compensator on the emission properties of the phosphor was also investigated for the first time. X‐Ray diffraction confirmed the phase purity of the synthesized phosphor. The surface morphology and elemental composition of the phosphor were studied using scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A laser-light pulse counting method was developed and investigated for its ability automatically to count acridine orange-stained bacteria and microcolonies of bacteria on the surface of polycarbonate membrane filters. The system consisted of an Argon laser which delivered a 5 μm diameter spot of coherent 488 nm wavelength light which was raster scanned across a 5×2 mm area of the membrane. Fluorescence pulses of orange light ( ca 650 nm) were detected via a dichroic mirror and barrier filter with a photomultiplier tube. For microcolony preparations a good relationship between the number of light pulses and cell density down to below 102/ml was observed, but at lower cell densities counting was not reliable, probably because of fluorescent debris. The method was also able to count single cells, but background auto-fluorescence and photo-bleaching produced a high and variable background signal in some samples.  相似文献   

13.
The luminescent system of higher luminous fungi is not fully understood and the enzyme/substrate pair of the light emission reaction has not been isolated. It was suggested that luminescence of fungi involves oxidase‐type enzymes, and reactive oxygen species are important for fungal light production. Generation of reactive oxygen species can be stimulated by ionizing irradiation, which has not been studied for luminous fungi. We report the effect of X‐irradiation on the luminescence of fungus Neonothopanus nambi. Experiments were performed with mycelium on a home‐built setup based on an X‐ray tube and monochromator/photomultiplier tube. Application of X‐rays does not change the emission spectrum, but after approximately 20 min of continuous irradiation, light production from unsupported mycelium starts growing and increases up to approximately five times. After peaking, its level decreases irrespective of the presence of X‐irradiation. After staying at a certain level, light production collapses to zero, which is not related to the drying of the mycelium or thermal impact of radiation. The observed shape of kinetics is characteristic of a multistage and/or chain reaction. The time profile of light production must reflect the current levels of radicals present in the system and/or the activity of enzyme complexes involved in light production. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The natural frequency of bone is studied in normal and fractured bones, in vitro as well as in vivo, by recording the outputs of microphone pick-ups, attached at proximal and distal ends to the bone defect. Natural frequency of bone is determined for an optimum output displayed on a cathode ray oscilloscope with respect to different stress wave frequencies. A comparative study of normal and fractured bone in vivo in 25 patients was made to diagnose the size of the fracture and its rate of healing. The natural frequency and intensity of sound in the injured bone was reduced while the output voltage increased with respect to the normal bone. The investigation reports a simple, reliable and rapid technique for the assessment of bone fracture.  相似文献   

15.
Eu2+‐activated SrMg2Al16O27 novel phosphor was synthesized by a combustion method (550°C furnace). The prepared phosphor was first characterized by X‐ray diffraction (XRD) for confirmation of phase purity. SEM analysis showed the morphology of the phosphor. The photoluminescence characteristics showed broad‐band excitation at 324 nm, which was monitored at 465 nm emission wavelength. The SrMg2Al16O27:Eu2+ phosphor shows broad blue emission centred at 465 nm, emitting a blue light corresponding to 4f65d1 → 4f7 transition. Here we report the photoluminescence characteristics of the prepared phosphor and compare it with commercial BAM:Eu2+ phosphor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Zn‐doped CaTiO3:Eu3+ red phosphors for enhanced photoluminescence in white light‐emitting diodes (LEDs) were synthesized by a solid‐state method. The structure and morphology of the obtained phosphor samples were observed by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties. Photoluminescence test data showed that the Zn‐doped phosphor is excited efficiently by near‐ultraviolet (NUV) light at wavelengths around 398 nm and emits an intense red light with a broad peak around 616 nm corresponding to the 5D07F2 transition of Eu3+. The intensity of this phosphor emission is three times stronger than that without Zn‐doping. Furthermore, this phosphor has very good thermal stability, high color purity and a low sintered temperature, all of which suggest its potential as a promising red phosphor for white LEDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
1. The light-induced pH change of chromatophore suspensions from Rhodospirillum rubrum was stimulated significantly and similarly by KCl, NaCl, LiCl, RbCl, CsCl, MgCl2, MnCl2, and CaCl2. In the dark, the pH of chromatophore suspensions decreased immediately and markedly on adding these salts. 2. The light-induced pH change stimulated by KCl plus valinomycin was inhibited by LiCl and NaCl, but not by RbCl. 3. The optimum pH values for light-induced pH change and photosynthetic ATP formation were around 5 and 8, respectively. The amount of chromatophore-bound ubiquinone-10 reduced in the light was independent of pH from 5 to 9. At pH 8, the number of protons incorporated into chromatophores in the light was one-half of the number of ubiquinone-10 molecules reduced in the light. 4. Among several pH indicators tested, bromothymol blue (BTB) and neutral red (NR) showed absorbance changes on illumination of chromatophores. Although the pH change indicated by the absorbance change was opposite to the light-induced pH change of the medium, the effect of KCl on the absorbance changes of BTB and NR, and the effect of valinomycin on that of NR, but not on that of BTB, were similar to those on the light-induced pH change. 5. The light-induced absorbance change of BTB was significantly inhibited by NR, whereas that of NR was hardly influenced by BTB. 6. Oligomycin stimulated the light-induced absorbance change of BTB under either non-phosphorylating or phosphorylating conditions. On the other hand, that of NR under phosphorylating conditions was 50% of that under non-phosphorylating conditions, and was increased by oligomycin.  相似文献   

18.
We have developed an optical sample cell made of stainless steel and fitted with three quartz ultracentrifuge windows in standard holders, to follow the kinetics of macromolecular reactions by the pressure-jump technique. Photomultiplier response to transmitted white light is continuously subtracted from photomultiplier response to white light scattered at 90°C, the difference being displayed by an oscilloscope. The pressure is simultaneously monitored by a quartz pressure sensor in mechanical contact with the sample. Pressurization is accomplished by leading in gas from a commercial cylinder, as originally described by Ljunggren and Lamm, but the pressurization time has been reduced by a factor of 25, to 2 millisec, by valving off a fixed volume of helium and introducing it into the sample cell through a high-speed solenoid valve. Determinations may be repeated at will on a single sample, of total volume under 2 ml. This light-scattering pressure-jump apparatus has been used to observe the kinetics of a number of macromolecular interactions and to determine rate constants for the ribosome-subunit interaction of Escherichia coli.  相似文献   

19.
The synthesis, X‐ray diffraction, photoluminescence, TGA/DTA and FTIR techniques in Dy3+ activated Na2Sr(PO4)F phosphor are reported in this paper. The prepared phosphor gave blue, yellow and red emission in the visible region of the spectrum at 348 nm excitation. CIE color co‐ordinates of Na2Sr(PO4)F:Dy3+ are suitable as white light‐emitting phosphors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, europium‐doped strontium aluminate (SrAl2O4:Eu2+) phosphors were synthesized using a combustion method with urea as a fuel at 600°C. The phase structure, particle size, surface morphology and elemental analysis were studied using X‐ray diffractometry (XRD), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectra. The EDX and FTIR spectra confirm the elements present in the SrAl2O4:Eu2+ phosphor. The optical properties of SrAl2O4:Eu2+ phosphors were investigated by photoluminescence (PL) and mechanoluminescence (ML). The excitation and emission spectra showed a broad band with peaks at 337 and 515 nm, respectively. The ML intensities of SrAl2O4:Eu2+ phosphor increased proportionally with the increase in the height of the mechanical load, which suggests that this phosphor could be used in stress sensors. The CIE colour chromaticity diagram and ML spectra confirm that the SrAl2O4:Eu2+ phosphor emitted green coloured light. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号