首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cAMP plays an important role in peripheral chemoreflex function in animals. We tested the hypothesis that the phosphodiesterase inhibitor and inotropic medication enoximone increases peripheral chemoreflex function in humans. In a single-blind, randomized, placebo-controlled crossover study of 15 men, we measured ventilatory, muscle sympathetic nerve activity, and hemodynamic responses to 5 min of isocapnic hypoxia, 5 min of hyperoxic hypercapnia, and 3 min of isometric handgrip exercise, separated by 1 wk, with enoximone and placebo administration. Enoximone increased cardiac output by 120 +/- 3.7% from baseline (P < 0.001); it also increased the ventilatory response to acute hypoxia [13.6 +/- 1 vs. 11.2 +/- 0.7 l/min at 5 min of hypoxia, P = 0.03 vs. placebo (by ANOVA)]. Despite a larger minute ventilation and a smaller decrease in O(2) desaturation (83 +/- 1 vs. 79 +/- 2%, P = 0.003), the muscle sympathetic nerve response to hypoxia was similar between enoximone and placebo (123 +/- 6 and 117 +/- 6%, respectively, P = 0.28). In multivariate regression analyses, enoximone enhanced the ventilatory (P < 0.001) and sympathetic responses to isocapnic hypoxia. Hyperoxic hypercapnia and isometric handgrip responses were not different between enoximone and placebo (P = 0.13). Enoximone increases modestly the chemoreflex responses to isocapnic hypoxia. Moreover, this effect is specific for the peripheral chemoreflex, inasmuch as central chemoreflex and isometric handgrip responses were not altered by enoximone.  相似文献   

2.
We compared the effects of isocapnic hypoxia (IHO) and hyperoxic hypercapnia (HC) on sympathetic nerve activity (SNA) recorded from a peroneal nerve in 13 normal subjects. HC caused greater increases in blood pressure (BP), minute ventilation (VE), and SNA [53 +/- 14% (SE) during HC vs. 21 +/- 7% during IHO; P less than 0.05]. Even at equivalent levels of VE, HC still elicited greater SNA than IHO. However, apnea during HC caused a lesser (P less than 0.05) increase in SNA (91 +/- 26% compared with apnea on room air) than apnea during IHO (173 +/- 50%). Hypercapnic hypoxia resulted in a greater absolute increase in VE (23.6 +/- 2.8 l/min) than the additive increases due to HC alone plus IHO alone (18.0 +/- 1.8 l/min, P less than 0.05). SNA also increased synergistically by 108 +/- 23% with the combined stimulus compared with the additive effect of HC alone plus IHO alone (68 +/- 19%; P less than 0.05). We conclude that 1) HC causes greater increases in VE and SNA than does hypoxia; 2) for the same increase in VE, hypercapnia still causes a greater increase in SNA than hypoxia; however, during apnea, hypoxia causes a much greater increase in SNA than hypercapnia; 3) the inhibitory influence of ventilation on SNA is greater during hypoxia (i.e., predominantly peripheral chemoreceptor stimulation) than hypercapnia (i.e., predominantly central chemoreceptor stimulation); and 4) combined hypoxia and hypercapnia have a synergistic effect on SNA as well as on VE.  相似文献   

3.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

4.
Recurrent and intermittent nocturnal hypoxia is characteristic of several diseases including chronic obstructive pulmonary disease, congestive heart failure, obesity-hypoventilation syndrome, and obstructive sleep apnea. The contribution of hypoxia to cardiovascular morbidity and mortality in these disease states is unclear, however. To investigate the impact of recurrent nocturnal hypoxia on hemodynamics, sympathetic activity, and vascular tone we evaluated 10 normal volunteers before and after 14 nights of nocturnal sustained hypoxia (mean oxygen saturation 84.2%, 9 h/night). Over the exposure, subjects exhibited ventilatory acclimatization to hypoxia as evidenced by an increase in resting ventilation (arterial Pco(2) 41.8 +/- 1.5 vs. 37.5 +/- 1.3 mmHg, mean +/- SD; P < 0.05) and in the isocapnic hypoxic ventilatory response (slope 0.49 +/- 0.1 vs. 1.32 +/- 0.2 l/min per 1% fall in saturation; P < 0.05). Subjects exhibited a significant increase in mean arterial pressure (86.7 +/- 6.1 vs. 90.5 +/- 7.6 mmHg; P < 0.001), muscle sympathetic nerve activity (20.8 +/- 2.8 vs. 28.2 +/- 3.3 bursts/min; P < 0.01), and forearm vascular resistance (39.6 +/- 3.5 vs. 47.5 +/- 4.8 mmHg.ml(-1).100 g tissue.min; P < 0.05). Forearm blood flow during acute isocapnic hypoxia was increased after exposure but during selective brachial intra-arterial vascular infusion of the alpha-blocker phentolamine it was unchanged after exposure. Finally, there was a decrease in reactive hyperemia to 15 min of forearm ischemia after the hypoxic exposure. Recurrent nocturnal hypoxia thus increases sympathetic activity and alters peripheral vascular tone. These changes may contribute to the increased cardiovascular and cerebrovascular risk associated with clinical diseases that are associated with chronic recurrent hypoxia.  相似文献   

5.
Exposure to hypoxia produces long-lasting sympathetic activation in humans.   总被引:9,自引:0,他引:9  
The relative contributions of hypoxia and hypercapnia in causing persistent sympathoexcitation after exposure to the combined stimuli were assessed in nine healthy human subjects during wakefulness. Subjects were exposed to 20 min of isocapnic hypoxia (arterial O(2) saturation, 77-87%) and 20 min of normoxic hypercapnia (end-tidal P(CO)(2), +5.3-8.6 Torr above eupnea) in random order on 2 separate days. The intensities of the chemical stimuli were manipulated in such a way that the two exposures increased sympathetic burst frequency by the same amount (hypoxia: 167 +/- 29% of baseline; hypercapnia: 171 +/- 23% of baseline). Minute ventilation increased to the same extent during the first 5 min of the exposures (hypoxia: +4.4 +/- 1.5 l/min; hypercapnia: +5.8 +/- 1.7 l/min) but declined with continued exposure to hypoxia and increased progressively during exposure to hypercapnia. Sympathetic activity returned to baseline soon after cessation of the hypercapnic stimulus. In contrast, sympathetic activity remained above baseline after withdrawal of the hypoxic stimulus, even though blood gases had normalized and ventilation returned to baseline levels. Consequently, during the recovery period, sympathetic burst frequency was higher in the hypoxia vs. the hypercapnia trial (166 +/- 21 vs. 104 +/- 15% of baseline in the last 5 min of a 20-min recovery period). We conclude that both hypoxia and hypercapnia cause substantial increases in sympathetic outflow to skeletal muscle. Hypercapnia-evoked sympathetic activation is short-lived, whereas hypoxia-induced sympathetic activation outlasts the chemical stimulus.  相似文献   

6.
The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.  相似文献   

7.
The effect of oral caffeine on resting ventilation (VE), ventilatory responsiveness to progressive hyperoxic hypercapnia (HCVR), isocapnic hypoxia (HVR), and moderate exercise (EVR) below the anaerobic threshold (AT) was examined in seven healthy adults. Ventilatory responses were measured under three conditions: control (C) and after ingestion of either 650 mg caffeine (CF) or placebo (P) in a double-blind randomized manner. None of the physiological variables of interest differed significantly for C and P conditions (P greater than 0.05). Caffeine levels during HCVR, HVR, and EVR were 69.5 +/- 11.8, 67.8 +/- 10.8, and 67.8 +/- 10.9 (SD) mumol/l, respectively (P greater than 0.05). Metabolic rate at rest and during exercise was significantly elevated during CF compared with P. An increase in VE from 7.4 +/- 2.5 (P) to 10.5 +/- 2.1 l/min (CF) (P less than 0.05) was associated with a decrease in end-tidal PCO2 from 39.1 +/- 2.7 (P) to 35.1 +/- 1.3 Torr (CF) (P less than 0.05). Caffeine increased the HCVR, HVR, and EVR slopes (mean increase: 28 +/- 8, 135 +/- 28, 14 +/- 5%, respectively) compared with P; P less than 0.05 for each response. Increases in resting ventilation, HCVR, and HVR slopes were associated with increases in tidal volume (VT), whereas the increase in EVR slope was accompanied by increases in both VT and respiratory frequency. Our results indicate that caffeine increases VE and chemosensitivity to CO2 inhalation, hypoxia, and CO2 production during exercise below the AT.  相似文献   

8.
Pregnancy increases ventilation and ventilatory sensitivity to hypoxia and hypercapnia. To determine the role of the carotid body in the increased hypoxic ventilatory response, we measured ventilation and carotid body neural output (CBNO) during progressive isocapnic hypoxia in 15 anesthetized near-term pregnant cats and 15 nonpregnant females. The pregnant compared with nonpregnant cats had greater room-air ventilation [1.48 +/- 0.24 vs. 0.45 +/- 0.05 (SE) l/min BTPS, P less than 0.01], O2 consumption (29 +/- 2 vs. 19 +/- 1 ml/min STPD, P less than 0.01), and lower end-tidal PCO2 (30 +/- 1 vs. 35 +/- 1 Torr, P less than 0.01). Lower end-tidal CO2 tensions were also observed in seven awake pregnant compared with seven awake nonpregnant cats (28 +/- 1 vs. 31 +/- 1 Torr, P less than 0.05). The ventilatory response to hypoxia as measured by the shape of parameter A was twofold greater (38 +/- 5 vs. 17 +/- 3, P less than 0.01) in the anesthetized pregnant compared with nonpregnant cats, and the CBNO response to hypoxia was also increased twofold (58 +/- 11 vs. 29 +/- 5, P less than 0.05). The increased CBNO response to hypoxia in the pregnant compared with the nonpregnant cats persisted after cutting the carotid sinus nerve while recording from the distal end, indicating that the increased hypoxic sensitivity was not due to descending central neural influences. We concluded that greater carotid body sensitivity to hypoxia contributed to the increased hypoxic ventilatory responsiveness observed in pregnant cats.  相似文献   

9.
Short-term potentiation of ventilation (VSTP) may be observed in healthy subjects on sudden termination of an hypoxic stimulus. We hypothesized that the level of hypoxia preceding normoxia would modify the duration and magnitude of the ensuing ventilatory decay. Ten healthy adults were studied on two different occasions, during which they were randomly exposed to isocapnic 6 or 10% O2 for 60 s and then switched to an isocapnic normoxic gas mixture. Both hypoxic gases induced significant ventilatory responses, and mean peak minute ventilation before the isocapnic normoxic switch was higher in 6% O2 (P < 0.001). The fast time constant of the two-exponential equation representing the best fit for ventilatory decay was unaffected by the magnitude of the hypoxic stimulus. However, the slow time constant, which is considered to represent VSTP, was markedly prolonged in 6% compared with 10% O2 [106.7 +/- 11.3 vs. 38. 2 +/- 6.1 (SD) s, respectively; P < 0.0001]. This result indicates that VSTP is stimulus dependent. We conclude that the magnitude of hypoxia preceding a normoxic transient modifies VSTP characteristics. We speculate that the interdependence function of ventilatory stimulus and short-term potentiation is crucial for preservation of system stability during transitions from high to low ventilatory drives.  相似文献   

10.
We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.  相似文献   

11.
Our purpose was to test the hypothesis that hypoxia potentiates exercise-induced sympathetic neural activation in humans. In 15 young (20-30 yr) healthy subjects, lower leg muscle sympathetic nerve activity (MSNA, peroneal nerve; microneurography), venous plasma norepinephrine (PNE) concentrations, heart rate, and arterial blood pressure were measured at rest and in response to rhythmic handgrip exercise performed during normoxia or isocapnic hypoxia (inspired O2 concn of 10%). Study I (n = 7): Brief (3-4 min) hypoxia at rest did not alter MSNA, PNE, or arterial pressure but did induce tachycardia [17 +/- 3 (SE) beats/min; P less than 0.05]. During exercise at 50% of maximum, the increases in MSNA (346 +/- 81 vs. 207 +/- 14% of control), PNE (175 +/- 25 vs. 120 +/- 11% of control), and heart rate (36 +/- 2 vs. 20 +/- 2 beats/min) were greater during hypoxia than during normoxia (P less than 0.05), whereas the arterial pressure response was not different (26 +/- 4 vs. 25 +/- 4 mmHg). The increase in MSNA during hypoxic exercise also was greater than the simple sum of the separate responses to hypoxia and normoxic exercise (P less than 0.05). Study II (n = 8): In contrast to study I, during 2 min of exercise (30% max) performed under conditions of circulatory arrest and 2 min of postexercise circulatory arrest (local ischemia), the MSNA and PNE responses were similar during systemic hypoxia and normoxia. Arm ischemia without exercise had no influence on any variable during hypoxia or normoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The aims of this study were to determine 1) whether ventilatory adaptation occurred over a 5-day exposure to a constant elevation in end-tidal PCO2 and 2) whether such an exposure altered the sensitivity of the chemoreflexes to acute hypoxia and hypercapnia. Ten healthy human subjects were studied over a period of 13 days. Their ventilation, chemoreflex sensitivities, and acid-base status were measured daily before, during, and after 5 days of elevated end-tidal PCO2 at 8 Torr above normal. There was no major adaptation of ventilation during the 5 days of hypercapnic exposure. There was an increase in ventilatory chemosensitivity to acute hypoxia (from 1.35 +/- 0.08 to 1.70 +/- 0.07 l/min/%; P < 0.01) but no change in ventilatory chemosensitivity to acute hypercapnia. There was a degree of compensatory metabolic alkalosis. The results do not support the hypothesis that the ventilatory adaptation to chronic hypercapnia would be much greater with constant elevation of alveolar PCO2 than with constant elevation of inspired PCO2, as has been used in previous studies and in which the feedback loop between ventilation and alveolar PCO2 is left intact.  相似文献   

14.
The effects of intravenous infusion of dopamine (20 microgram.min) on the steady-state ventilatory and carotid chemoreceptor responses to successive levels of isocapnic hypoxia and hyperoxic hypercapnia were investigated in cats anesthetized with alpha-chloralose. Dopamine infusion was followed by a maximal decrease in ventilation in about 20 s. Thereafter, the effect diminished and stabilized. Termination of dopamine infusion was promptly followed by an increase in ventilation. These ventilatory responses were smaller than the corresponding carotid chemoreceptor responses. The steady-state effect of dopamine infusion was to diminish ventilation at all levels of arterial O2 tension, the decrease being greater during hypoxia than that during hyperoxia. Bilateral section of the carotid sinus nerves significantly diminished but did not abolish the inhibitory effect of dopamine on ventilation during hyperoxia. Thus the ventilatory depression due to dopamine infusion is not entirely due to its effect on the carotid chemoreceptors. Dopamine decreased ventilatory responses to successive levels of hypercapnia by the same magnitude without changing the slope of the response curves. The steady-state relationship between chemoreceptor activity and ventilation shows that the ventilatory equivalent for carotid chemoreceptor activity is increased during dopamine infusion because of its greater inhibitory effect on carotid chemoreceptor activity than on ventilation with the decrease of arterial O2 tension.  相似文献   

15.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

16.
Adenosine infusion (100 micrograms X kg-1 X min-1) in humans stimulates ventilation but also causes abdominal and chest discomfort. To exclude the effects of symptoms and to differentiate between a central and peripheral site of action, we measured the effect of adenosine infused at a level (70-80 micrograms X kg-1 X min-1) below the threshold for symptoms. Resting ventilation (VE) and progressive ventilatory responses to isocapnic hypoxia and hyperoxic hypercapnia were measured in six normal men. Compared with a control saline infusion given single blind on the same day, adenosine stimulated VE [mean increase: 1.3 +/- 0.8 (SD) l/min; P less than 0.02], lowered resting end-tidal PCO2 (PETCO2) (mean fall: -3.9 +/- 0.9 Torr), and increased heart rate (mean increase: 16.1 +/- 8.1 beats/min) without changing systemic blood pressure. Adenosine increased the hypoxic ventilatory response (control: -0.68 +/- 0.4 l X min-1 X %SaO2-1, where %SaO2 is percent of arterial O2 saturation; adenosine: -2.40 +/- 1.2 l X min-1 X %SaO2-1; P less than 0.01) measured at a mean PETCO2 of 38.3 +/- 0.6 Torr but did not alter the hypercapnic response. This differential effect suggests that adenosine may stimulate ventilation by a peripheral rather than a central action and therefore may be involved in the mechanism of peripheral chemoreception.  相似文献   

17.
Effect of brain blood flow on hypoxic ventilatory response in humans   总被引:1,自引:0,他引:1  
To assess the effect of brain blood flow on hypoxic ventilatory response, we measured arterial and internal jugular venous blood gases and ventilation simultaneously and repeatedly in eight healthy male humans in two settings: 1) progressive and subsequent sustained hypoxia, and 2) stepwise and progressive hypercapnia. Ventilatory response to progressive isocapnic hypoxia [arterial O2 partial pressure 155.9 +/- 4.0 (SE) to 46.7 +/- 1.5 Torr] was expressed as change in minute ventilation per change in arterial O2 saturation and varied from -0.16 to -1.88 [0.67 +/- 0.19 (SE)] l/min per % among subjects. In the meanwhile, jugular venous PCO2 (PjCO2) decreased significantly from 51.0 +/- 1.1 to 47.3 +/- 1.0 Torr (P less than 0.01), probably due to the increase in brain blood flow, and stayed at the same level during 15 min of sustained hypoxia. Based on the assumption that PjCO2 reflects the brain tissue PCO2, we evaluated the depressant effect of fall in PjCO2 on hypoxic ventilatory response, using a slope for ventilation-PjCO2 line which was determined in the second set of experiments. Hypoxic ventilatory response corrected with this factor was -1.31 +/- 0.33 l/min per %, indicating that this factor modulated hypoxic ventilatory response in humans. The ventilatory response to progressive isocapnic hypoxia did not correlate with this factor but significantly correlated with the withdrawal test (modified transient O2 test), which was performed on a separate day. Accordingly we conclude that an increase in brain blood flow during exposure to moderate hypoxia may substantially attenuate the ventilatory response but that it is unlikely to be the major factor of the interindividual variation of progressive isocapnic hypoxic ventilatory response in humans.  相似文献   

18.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia.  相似文献   

19.
Mechanisms of ventilatory acclimatization to chronic hypoxia remain unclear. To determine whether the sensitivity of peripheral chemoreceptors to hypoxia increases during acclimatization, we measured ventilatory and carotid sinus nerve responses to isocapnic hypoxia in seven cats exposed to simulated altitude of 15,000 ft (barometric pressure = 440 Torr) for 48 h. A control group (n = 7) was selected for hypoxic ventilatory responses matched to the preacclimatized measurements of the experimental group. Exposure to 48 h of hypobaric hypoxia produced acclimatization manifested as decrease in end-tidal PCO2 (PETCO2) in normoxia (34.5 +/- 0.9 Torr before, 28.9 +/- 1.2 after the exposure) as well as in hypoxia (28.1 +/- 1.9 Torr before, 21.8 +/- 1.9 after). Acclimatization produced an increase in hypoxic ventilatory response, measured as the shape parameter A (24.9 +/- 2.6 before, 35.2 +/- 5.6 after; P less than 0.05), whereas values in controls remained unchanged (25.7 +/- 3.2 and 23.1 +/- 2.7; NS). Hypoxic exposure was associated with an increase in the carotid body response to hypoxia, similarly measured as the shape parameter A (24.2 +/- 4.7 in control, 44.5 +/- 8.2 in acclimatized cats). We also found an increased dependency of ventilation on carotid body function (PETCO2 increased after unilateral section of carotid sinus nerve in acclimatized but not in control animals). These results suggest that acclimatization is associated with increased hypoxic ventilatory response accompanied by enhanced peripheral chemoreceptor responsiveness, which may contribute to the attendant rise in ventilation.  相似文献   

20.
Hypoxic and hypercapnic ventilatory responses were measured after two levels of acute inhalation of cigarette smoke, minimum-level nicotine smoke (smoke 1) and nicotine-containing smoke (smoke 2), in 10 normal men. Chemosensitivity to hypoxia and hypercapnia was assessed both in terms of slope factors for ventilation-alveolar PO2 curve (A) and ventilation-alveolar PCO2 line (S) and of absolute levels of minute ventilation (VE) at hypoxia or hypercapnia. Ventilatory response to hypoxia and absolute level of VE at hypoxia significantly increased from 23.5 +/- 22.6 (SD) to 38.6 +/- 31.3 l . min-1 . Torr and from 10.6 +/- 2.5 to 12.6 +/- 3.5 l . min-1, respectively, during inhalation of cigarette smoke 2 (P less than 0.05). Inhalation of cigarette smoke 2 tended to increase the ventilatory response to hypercapnia, and the absolute level of VE at hypercapnia rose from 1.42 +/- 0.75 to 1.65 +/- 0.58 l . min-1 . Torr-1 and from 23.7 +/- 4.9 to 25.5 +/- 5.9 l . min-1, respectively, but these changes did not attain significant levels. Cigarette smoke 2 inhalation induced an increase in heart rate from 64.7 +/- 5.7 to 66.4 +/- 6.3 beats . min-1 (P less than 0.05) during room air breathing, whereas resting ventilation and specific airway conductance did not change significantly. On the other hand, acute inhalation of cigarette smoke 1 changed none of these variables. These results indicate that hypoxic chemosensitivity is augmented after cigarette smoke and that nicotine is presumed to act on peripheral chemoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号