首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphenol oxidase (PPO) is responsible for enzymatic browning of apples. Apples lacking PPO activity might be useful not only for the food industry but also for studies of the metabolism of polyphenols and the function of PPO. Transgenic apple calli were prepared by using Agrobacterium tumefaciens carrying the kanamycin (KM) resistant gene and antisense PPO gene. Four KM-resistant callus lines were obtained from 356 leaf explants. Among these transgenic calli, three calli grew on the medium containing KM at the same rate as non-transgenic callus on the medium without KM. One callus line had an antisense PPO gene, in which the amount and activity of PPO were reduced to half the amount and activity in non-transgenic callus. The browning potential of this line, which was estimated by adding chlorogenic acid, was also half the browning potential of non-transgenic callus.  相似文献   

2.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
  相似文献   

3.
运用丙酮浸漬干燥、磷酸盐缓冲液提取、低温离心、硫酸铵沉淀、DEAE-Sephadex(A-50)、Sephadex(G-75) 和DEAE-celluse(DE-52)层析等方法从苹果中分离获得一种新的含铜酶蛋白,该酶被命名为多酚氧化酶Ⅱ(polyphenol oxidase Ⅱ, PPOⅡ),纯化倍数是215,纯化收率是23%.PAGE、SDS-PAGE和MALDI-TOF 等技术用于测定所获的酶的纯度和分子量.在PAGE和SDS-PAGE 均显示一条带,表明PPOⅡ只由一个亚基组成,且已达到单一组分(MALDI-TOF的结果更证实了这一点).SDS-PAGE 和 MALDI-TOF 的结果都表明PPO的分子量为 38204 Da.pH值对酶活性和稳定性研究的结果显示,从pH值4.0~7.0随着pH值的增加,酶活性也不断增加;从pH值 7.0~11.0, 酶活性不断降低.PPOⅡ的最适pH值为6.6最适温度为30℃.  相似文献   

4.
以成熟苹果果实的RNA为模板,经RT—PCR扩增并克隆苹果多酚氧化酶(APPO)长度为710bp的反义、正义基因片段。以副球菌中类胡罗卜素合成有关的(crtW crtY)融合基因片段YYT为间隔区。将APPO反义基因片段、YYT和APPO正义基因片段串联,构成全长为2446bp的DNA并插入到植物双元载体pYPX145中,构成可表达苹果多酚氧化酶双链RNA的植物双元载体pYF7704。以根癌农杆菌介导的叶盘转化法转化苹果栽培品种红富士,通过50mg/L卡那霉素筛选和GUS检测,获得了转基因苹果抗性芽。荧光定量RT—PCR检测结果显示,转基因苹果抗性芽内多酚氧化酶基因的干扰效果达91.69%以上,研究结果证实多酚氧化酶双链RNA干扰在转基因苹果上是可行的。  相似文献   

5.
Consumer demands for 'freshness' in processed foods has been given increasing attention by food processing industries by searching for minimally processed products. Polyphenol Oxidase (PPO) mediated browning is a major cause of undesirable flavors and nutritional losses in fruit juices. Here the anti-browning efficiency of glutathione (GSH, reduced form) and cinnamic acid (CA) in apple juice is evaluated. It was observed that the rate of the browning reaction could be efficiently delayed using GSH and CA, which act as inhibitors of PPO. Kinetic studies confirm that GSH and CA are non-competitive and competitive inhibitors of PPO respectively.  相似文献   

6.
Summary Tissue browning that frequently results in the early death of bamboo shoots in vitro correlated directly with polyphenol oxidase (PPO, EC 1.10.3.1) activity and inversely with titratable acidity. It was unrelated to the level of endogenous phenols. During the course of culture, timing of PPO activity paralleled that of explant browning. Browning was highest among shoots cultured in a medium of pH 8, which was consistent with the pH optinum of the bamboo enzyme. The pH optimum was first determined with the crude enzyme, then verified with two purified isozymes. Stability of the bamboo PPO was also highest at pH 10. PPO activities of the severely browning Dendrocalamus latiflorus, the moderately browning Phyllostachys nigra, and the relatively non-browning Bambusa oldhamii were inhibited strongly by ascorbic acid, cysteine, sodium diethyldithiocarbamate, and sodium sulfite. But characterization of bamboo PPO according to enzyme inhibitors was not possible because enzyme extracts of the three species gave varied responses to the traditional substances. Nutrient medium addenda of some PPO inhibitors, namely ascorbic acid, cysteine, kojic acid, and thiourea, mainly enhanced browning. However, ferulic acid at 3 mM and lower concentrations reduced the number of brown shoots per culture, although not the percentage of cultures that browned. Polyvinylpyrrolidone failed completely to suppress browning. The two purified isozymes showed different temperature optima for PPO activity: 60°C and 65°C. The purified isozymes displayed a substrate preference for dopamine, or a cathecol oxidase characteristics.  相似文献   

7.
A new series of N,N'-diarylureas (1-9) was synthesized. These compounds were investigated as inhibitors of polyphenol oxidase (PPO) which had been purified from banana by an affinity gel comprised of Sepharose 4B-l-tyrosine-p-amino benzoic acid. K(i) values for (1), (2), (3), (5), (6), (7) and (8) were determined as 0.285, 17.97, 0.187, 0.108, 0.063, 0.044 and 0.047?mM, respectively. Thus (2) was by far the most effective inhibitor. Interestingly, (4) and (9) behaved as an activator of PPO in this study.  相似文献   

8.
9.
《Biochemical education》1999,27(3):171-173
A simple laboratory procedure is described for demonstrating the enzyme-catalysed reaction in the browning of potato. It requires a minimum of equipment and can be completed in a 3-h lab class.  相似文献   

10.
Callus cultures from shoot tips of mature Scots pine ( Pinus sylvestris L.) were characterized by rapid browning and an inability to regenerate. The peroxidase (POD) and polyphenol oxidase (PPO) activities and relationship to browning in such cultures were compared with embryogenic and non-embryogenic cultures of Scots pine, started from immature embryos of three different pine clones. The browning in callus cultures derived from pine buds was visible approximately after 2 weeks of culture, and continued thereafter until the callus was dark brown and poorly growing. The non-embryogenic cultures induced from immature embryos showed either light yellow coloring or browning, whereas the embryogenic cultures showed browning. POD activity increased during the first 4 weeks in callus tissue initiated from pine buds, and was significantly higher than in pine buds or cultures derived from immature embryos. The ability of cultures initiated from pine buds to oxidize catechol was notably high compared with cultures initiated from immature embryos, regardless of the time of measurement. Addition of catalase revealed that both POD and PPO were able to use catechol as substrate. An antibody raised against broad bean ( Vicia faba ) chloroplast PPO was used to recognize PPO. One polypeptide with a molecular mass of 50 kDa was detected in all pine samples on SDS-PAGE and non-denaturing PAGE. Another polypeptide with a molecular mass of 70 kDa was shown exclusively in the light-yellow non-embryogenic cultures. The results suggest that especially the high POD activities in callus tissues started from mature trees cause rapid and early browning and possibly subsequent cell death.  相似文献   

11.
Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.  相似文献   

12.
Latent polyphenol oxidase was extracted and partially purified from grape cell suspension cultures. The enzyme was shown to be activated by polyamines. Activation of the enzyme increased with increasing polyamine concentrations and half-maximal activation was in the order of 8mM. Kinetic parameters, Km and Vm, were also calculated for the latent and activated enzymes. The activating effect of polyamines was studied at different pH values. Optimum pH was 4.5 for latent and activated enzymes. However, the highest degree of activation was obtained at pH 5. Activation caused a higher sensitivity of polyphenol oxidase to pH and temperature. The ability of polyamines to activate the enzyme may suggest a limited conformational change.  相似文献   

13.
The breaking of dormancy in apple buds (Malus domestica Borkh cv. York Imperial) by thidiazuron (N-phenyl-N′-1,2,3,-thidiazol-5-ylurea) was investigated in relation to catalase, peroxidase, and polyphenol oxidase activities and their isoenzyme patterns. The activity and number of isoenzymic components of catalase increased progressively during bud break, then decreased after buds started to grow. Peroxidase activity was highest during dormancy and declined during bud swell, increased at bud break, and decreased after bud expansion. Several isoperoxidases were observed in gel electrophoresis. Similar patterns were found at different growth stages of apple buds except for one peroxidase isoenzyme, P3, which disappeared 12 days after thidiazuron treatment. There was an inverse relationship between the activities of polyphenol oxidase and peroxidase during the development of apple buds. Apple buds have a very similar polyphenol oxidase isoenzyme pattern throughout bud development. However, the appearance and disappearance of minor isoenzymes were also observed. Phloridzin, rutin, p-coumaric, epicatechin, naringin, chlorogenic acid, and catechol were found in apple buds. Among them, phloridzin, rutin, and p-coumaric were the dominant phenolic compounds. Dormant buds contained a high amount of phenolic substances which decreased after bud break (4 days after thidiazuron treatment) then increased until the start of bud expansion. Phenolic compounds are found to be potent modifiers of catalase, peroxidase, and polyphenol oxidase activity, as both inhibitors and stimulators in apple buds.  相似文献   

14.
The breaking of dormancy in apple buds (Malus domestica Borkh cv. York Imperial) by thidiazuron (N-phenyl-N-1,2,3,-thidiazol-5-ylurea) was investigated in relation to catalase, peroxidase, and polyphenol oxidase activities and their isoenzyme patterns. The activity and number of isoenzymic components of catalase increased progressively during bud break, then decreased after buds started to grow. Peroxidase activity was highest during dormancy and declined during bud swell, increased at bud break, and decreased after bud expansion. Several isoperoxidases were observed in gel electrophoresis. Similar patterns were found at different growth stages of apple buds except for one peroxidase isoenzyme, P3, which disappeared 12 days after thidiazuron treatment. There was an inverse relationship between the activities of polyphenol oxidase and peroxidase during the development of apple buds. Apple buds have a very similar polyphenol oxidase isoenzyme pattern throughout bud development. However, the appearance and disappearance of minor isoenzymes were also observed. Phloridzin, rutin, p-coumaric, epicatechin, naringin, chlorogenic acid, and catechol were found in apple buds. Among them, phloridzin, rutin, and p-coumaric were the dominant phenolic compounds. Dormant buds contained a high amount of phenolic substances which decreased after bud break (4 days after thidiazuron treatment) then increased until the start of bud expansion. Phenolic compounds are found to be potent modifiers of catalase, peroxidase, and polyphenol oxidase activity, as both inhibitors and stimulators in apple buds.  相似文献   

15.
A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial waste-water samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.  相似文献   

16.
Polyphenol oxidase (PPO) oxidizes, due to their tyrosine content, the proteins histone, casein and human serum albumin. These oxidations are inhibited by ascorbate which lowers the redox potential of the medium. Serum albumin in its native state is only moderately oxidized. If, however, prior to oxidation, the albumin is subjected to denaturation, involving unfolding of the chain, the attack by the enzyme is markedly increased. Such denaturation was effected by either the action of dodecyl sulfate or heating to 60°C. The implications of these findings to the problem of senescence are discussed.  相似文献   

17.
Characterization of polyphenol oxidase in coffee   总被引:11,自引:0,他引:11  
Polyphenol oxidase (PPO) was characterized in partially purified extracts of leaves (PPO-L) and fruit endosperm (PPO-E) of coffee (Coffea arabica L.). PPO activity was higher in early developmental stages of both leaves and endosperm of fruits. Wounding or exposure of coffee leaves to methyl jasmonate increased PPO activity 1.5-4-fold. PPO was not latent and was not activated by protease treatment. PPO activity was stimulated 10-15% with sodium dodecyl sulphate (SDS) at 0.35-1.75 mM, but at higher concentrations activities were similar to the control samples, without detergent. Prolonged incubation of extracts with trypsin or proteinase K inhibited PPO activity but pepsin had no effect. Inhibition of PPO with proteinase K was increased in the presence of SDS. PPO activity from both tissues was optimal at pH 6-7 and at an assay temperature of 30 degrees C. Activity was highest with chlorogenic acid as substrate with a Km of 0.882 mM (PPO-L) and 2.27 mM (PPO-E). Hexadecyl trimethyl-ammonium bromide, polyvinylpyrrolidone 40. cinnamic acid and salicylhydroxamic acid inhibited PPO from both tissues. Both enzymes were inactivated by heat but the activity in endosperm extracts was more heat labile than that from leaves. The apparent Mr determined by gel filtration was 46 (PPO-L) and 50 kDa (PPO-E). Activity-stained SDS polyacrylamide gel electrophoresis (PAGE) gels and western blots probed with PPO antibodies suggested the existence of a 67 kDa PPO which is susceptible to proteolytic cleavage that generates a 45 kDa active form.  相似文献   

18.
19.
Iaa oxidase and polyphenol oxidase activities of peanut peroxidase isozymes   总被引:1,自引:0,他引:1  
Four anionic isozymes (A1, A2, A4 and A5) from peanut cells in suspension medium possessed IAA oxidase and polyphenol oxidase activities. The specific activities of each of the enzymes differed among the 4 isozymes. The pH optima established in these assays for peroxidase was acidic, for IAA oxidase neutral and for polyphenol oxidase alkaline. All 4 isozymes had different Km and Vmax for the enzyme activities of peroxidase and polyphenol oxidase. The sigmoid kinetics from the IAA oxidase assays for the isozymes probably indicates an allosteric nature.  相似文献   

20.
Function of polyphenol oxidase in higher plants   总被引:10,自引:0,他引:10  
Recent evidence has supported the folllowing views:
1. Polyphenol oxidase (PPO) is a plastidic enzyme that is unclear-coded, but is inactive until incorporated into the plastid.
2. In healthy green tissues PPO exists in a latent form on the thylakoid membrane and is not involved in synthesis of phenolic compounds. In leucoplasts, proplastids, or amyloplasts PPO is often present in a latent form in rudimentary thylakoids.
3. PPO normally functions as a phenol oxidase in vivo only in sencent or damaged cells.
4. In the functional chloroplast, PPO may be involved in some aspect of oxygen chemistry – pherhaps mediation of pseudocyclic photophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号