首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cell-free system of nuclear extracts from BHK21 cells has been developed to catalyse recombination in vitro between the DNA of adenovirus type 12 (Ad12) and two different hamster preinsertion sequences. The pBR322 cloned 1768 bp fragment p7 and the 3.1 kbp fragment p16 from BHK21 hamster DNA had previously been identified as the preinsertion sites corresponding to the junctions between Ad12 DNA and hamster DNA in cell line CLAC1 and in the Ad12-induced tumour T1111(2), respectively. Preinsertion sequences, which had recombined previously with foreign (Ad12) DNA, might again be recognized by the recombination system even in a cell-free system. PstI cleaved Ad12 DNA and the circular or the EcoRI linearized p7 or p16 preinsertion sequences were incubated with nuclear extracts. Recombinants were isolated by transfecting the DNA into recA- Escherichia coli strains and by screening for Ad12 DNA-positive colonies. Without a selectable eukaryotic marker, all Ad12 DNA positive recombinants were registered. Out of a total of greater than 90 p7-Ad12 DNA recombinants, 21 were studied by restriction-hybridization, and four by partial nucleotide sequence analyses. Among the p16-Ad12 DNA recombinants, four were analysed. The sites of linkage between Ad12 DNA and p7 or p16 hamster DNA were all different and distinct from the original CLAC1 or T1111(2) junction site between Ad12 and hamster DNA. The in vitro recombinants were not generated by simple end-to-end joining of the DNA fragments used in the reaction but by genetic exchange. Thirteen of the 25 recombinants were derived from the 61-71 map unit fragment of Ad12 DNA. Recombination experiments between Ad12 DNA and four randomly selected unique or repetitive hamster DNA sequences of 1.5-6.2 kbp in length did not yield recombinants. Apparently, the p7 and p16 hamster preinsertion sequences recombined with Ad12 DNA with a certain preference.  相似文献   

2.
The adenovirus type 12 (Ad12)-induced mouse tumor CBA-12-1-T contains greater than 30 copies of viral DNA integrated into cellular DNA. One of the sites of linkage between the left terminus of Ad12 DNA and mouse DNA was cloned, mapped and sequenced by using conventional techniques. The preinsertion sequence was also cloned from normal CBA/J mouse DNA and sequenced. The sequence data and blotting analyses demonstrated that at the site of linkage nine nucleotide pairs of viral DNA and at least 1500 to 1600 nucleotide pairs of cellular DNA were deleted. Up to the site of linkage, the cellular DNA sequence in CBA-12-1-T tumor DNA and the preinsertion sequence in CBA/J mouse cells were identical. The site of Ad12 DNA integration was found to be located close to a site of transition from unique to repetitive cellular DNA sequences. The nucleotide sequence at the site of linkage and at the preinsertion site revealed palindromic stretches of 5 and 10 nucleotides pairs, respectively. Scattered patch homologies (8-10 nucleotide pairs long) were observed between adenoviral and cellular DNAs. A hypothetical model for DNA arrangements at the site of recombination is presented.  相似文献   

3.
4.
5.
The hamster cell line HE5 has been derived from primary hamster embryo cells by transformation with human adenovirus type 2 (Ad2). Each cell contains 2-3 copies of Ad2 DNA inserted into host DNA at apparently identical sites. The site of the junction between the right terminus of Ad2 DNA and hamster cell DNA was cloned and sequenced. The eight [corrected] right terminal nucleotides of Ad2 DNA were deleted. The unoccupied cellular DNA sequence in cell line HE5 , corresponding to the site of the junction between Ad2 and hamster cell DNA, was also cloned; 120-130 nucleotides in the cellular DNA were found to be identical to the cellular DNA sequence in the cloned junction DNA fragment, up to the site of the junction. The unoccupied and the occupied cellular DNAs and the adjacent viral DNA exhibited a few short nucleotide homologies. Patch homologies ranging in length from dodeca - to octanucleotides were detected by computer analyses at locations more remote from the junction site. When the right terminal nucleotide sequence of Ad2 DNA was matched to randomly selected sequences of 401 nucleotides from vertebrate or prokaryotic DNA, similar homologies were observed. It is likely that foreign (viral) DNA can be inserted via short sequence homologies at many different sites of cellular DNA.  相似文献   

6.
The hamster cell line CLAC1 originated from a tumor induced by injecting human adenovirus type 12 (Ad12) into newborn hamsters. Each cell contained about 12 copies of viral DNA colinearly integrated at two or three different sites. We have cloned and sequenced a DNA fragment comprising the site of junction between the left terminus of Ad12 DNA and cellular DNA. The first 174 nucleotides of Ad12 DNA were deleted at the site of junction. Within 40 nucleotides, there were one tri-, two tetra-, one penta-, and one heptanucleotide which were identical in the 174 deleted viral nucleotides and the cellular sequence replacing them. In addition, there were patch-type homologies ranging from octa- to decanucleotides between viral and cellular sequences. There is no evidence for a model assuming adenovirus DNA to integrate at identical cellular sites. The cellular DNA sequence corresponding to the junction fragment was cloned also from BHK21 (B3) hamster cells and sequenced. Up to the site of linkage with viral DNA, this middle repetitive cellular DNA sequence was almost identical with the equivalent sequence from CLAC1 hamster cells. Taken together with the results of previously published analyses (11, 12), the data suggest a model of viral (foreign) DNA integration by multiple short sequence homologies. Multiple sets of short patch homologies might be recognized as patterns in independent integration events. The model also accounts for the loss of terminal viral DNA sequences.  相似文献   

7.
Summary We have previously shown that DNA gyrase of Escherichia coli can promote recombination between heterologous DNAs in a cell-free system (Ikeda et al. 1982). In the present paper, we have studied the nucleotide sequences of several recombination junctions of -pBR322 recombinants and found that there were not more than three-basepair homologies between the parental DNAs in six combinations of the and pBR322 recombination sites. Based on this and previous results, we concluded that homology was not required for the DNA gyrase-mediated recombination. Furthermore, the structures of the recombinant DNAs we have analyzed suggest the occurrence of multiple crossovers in our in vitro system.  相似文献   

8.
The early and late gene products of human adenovirus type 12 (Ad12), as well as the viral proteins synthesized in an Ad12-transformed cell line, were identified by translation of viral mRNA in an in vitro protein-synthesizing system. Cytoplasmic RNA was isolated from permissive KB or nonpermissive BHK cells infected with Ad12 and from Ad12-transformed HA12/7 cells. Virus-specific RNA was selected by hybridization to Ad12 DNA covalently bound to cellulose. Viral RNA was then translated in a fractionated rabbit reticulocyte cell-free system or in wheat germ S-30 extracts. The proteins synthesized were characterized by immunoprecipitation and subsequent electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. RNA prepared from KB cells late after infection with Ad12 elicited the synthesis of most of the structural polypeptides of the virion and at least two presumably nonstructural Ad12 proteins. When viral RNA isolated early after infection of KB cells with Ad12 was translated in vitro, 10 polypeptides were observed: E-68K, E-50K, E-42K, E-39K, E-34K, E-21K, E-19K, E-13K, E-12K, and E-10K. Ad12-specific RNA was also isolated from the Ad12-transformed hamster cell line HA12/7, which contains several copies of the Ad12 genome integrated in the host genome. The RNA codes for at least seven polypeptides with molecular weights very similar to those of the early viral proteins.  相似文献   

9.
R Deuring  W Doerfler 《Gene》1983,26(2-3):283-289
In previous work we have described a symmetric recombinant (SYREC1) between Ad12 DNA and human KB cell DNA. This recombinant DNA molecule has been generated during productive infection and is encapsidated into virions. From the DNA of a similar symmetric recombinant (termed SYREC2) between the left terminus of Ad12 DNA and human KB cellular DNA, the site of linkage between the two DNAs was cloned and sequenced. It was demonstrated that the first 2081 Ad12 nucleotides counting from the left viral terminus are conserved and linked to a sequence of GC-rich (70.4% G + C) KB cell DNA which occurs about 20 times per cellular genome. Except for a common 5'-CTGGC-3' pentanucleotide between the Ad12 DNA and KB cell DNA sequences, extensive patch homologies were not apparent at the site of junction. Similarly, comparisons of the deleted Ad12 DNA sequence and the cellular sequence replacing it did not reveal patch homologies. The 304 bp abutting the Ad12 terminus were shown to hybridize to KB cell DNA. These results provided definitive proof for the occurrence of recombinants between viral and cellular DNAs in human cells productively infected by Ad12 as previously shown by less direct experiments (Burger and Doerfler, 1974; Schick et al., 1976). Across the site of junction, an open reading frame exists which extends the truncated 54-kDal protein of the E1b region of Ad12 DNA for another 66 amino acids encoded by KB cellular DNA. This sequence is terminated by two UGA translational termination signals. The hypothetical protein has not yet been isolated.  相似文献   

10.
A series of Y recombinants have been isolated from Y-specific DNA libraries and regionally located on the Y chromosome using a Y deletion panel constructed from individuals carrying structural abnormalities of the Y chromosome. Of twenty recombinants examined twelve have been assigned to Yp and eight to Yq. Five of the Yp recombinants map between Yp11.2 and Ypter and one can only be assigned to Yp. Of the former, four detect homologies on the X chromosome between Xq13 and Xq24 and the latter one between Xp22.3 and Xpter. The sixth recombinant detects autosomal homologous sequences. The six remaining Yp probes are located between Ycen and Yp11.2. One of these detects a homology on the X chromosome at Xq13-Xq24 and a series of autosomal sequences, two detect uniquely Y-specific sequences and three a complex pattern of autosomal homologies. The remaining eight recombinants have been assigned to three intervals on Yq. Of three recombinants located between Ycen and Yq11.21 two detect only Y sequences and one additional autosomal homologies. Two recombinants lie in the interval Yq11.21-Yq11-22, one of which detects only Y sequences and the other an Xp homology between Xp22.3 and Xpter. Finally, the three remaining Yq recombinants all detect autosomal homologies and are located between Yq11.22 and Yq12. The divergence between homologies on different chromosomes has been examined for three recombinants by washing Southern Blots at different levels of stringency. Additionally, Southern analysis of DNA from flow sorted chromosomes has been used to identify autosomes carrying homologies to two of the Y recombinants.  相似文献   

11.
R Gahlmann  M Schulz    W Doefler 《The EMBO journal》1984,3(13):3263-3269
The adenovirus type 2 (Ad2)-transformed hamster cell line HE5 contains one or very few integrated copies of Ad2 DNA. At the site of insertion of Ad2 DNA, the cellular DNA sequence has been completely preserved and has homologies to small unpolyadenylated, cytoplasmic RNAs of 300 nucleotides in length and to minority populations of smaller RNAs present in HE5 cells and in normal hamster cells. The 300-nucleotide RNA is present on average in approximately 20 copies per cell. This RNA, and shorter RNAs, reveal homologies to the hamster DNA sequence of approximately 400 nucleotides to the right of the site of insertion of Ad2 DNA, which is present in one or very few copies per genome. The nucleotide sequence of the DNA segment homologous to this RNA does not contain open reading frames in excess of a sequence encoding 18 amino acids. Thus, it is unlikely that the small RNAs are actually translated and their function is unknown. The nucleotide sequence does not exhibit similarities to known low mol. wt. RNAs of eukaryotic origin. The low mol. wt. cellular RNA has been found in HE5 cells, in other hamster cell lines and organs, and also in mouse cells. There are differences with respect to size and abundance in the RNAs smaller than 300 nucleotides between HE5 cells and LSH hamster embryo cells. The adenovirus type 12 (Ad12)-induced mouse tumor CBA-12-1-T carries greater than 30 copies of integrated Ad12 DNA. The cellular DNA sequence at the site of Ad12 DNA insertion exhibits homologies to small RNAs (approximately 300 nucleotides long) from mouse cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Physical mapping of a large-plaque mutation of adenovirus type 2.   总被引:34,自引:11,他引:23       下载免费PDF全文
We have developed a simple method based on cotransfection of overlapping DNA restriction fragments for construction of recombinants of adenovirus type 2 (Ad2) and Ad5. When Ad2 DNA digested with restriction endonuclease EcoRI was cotransfected with Ad5 DNA digested with SalI, recombination occurred between Ad2 EcoRI-A (map position 0 to 59) and Ad5 SalI-A (map position 45 to 100). Analysis of the recombinant DNAs by digestion with EcoRI or BamHI restriction endonucleases indicated that, as expected, recombination had occurred in overlapping sequences (map position 45 to 59) between the Ad2 EcoRI-A fragment and the Ad5 SalI-A fragment. By using this method, several recombinants were constructed between a large-plaque (lp) mutant of Ad2 and wild-type Ad5. Cleavage of the recombinant genomes with restriction endonucleases BamHI, EcoRI, and HindIII revealed that the lp mutation is located within the left 41% of Ad2 genome.  相似文献   

13.
The 31 human adenovirus (Ad) serotypes form five groups based upon DNA genome homologies: group A (Ad12, 18, 31), group B (Ad3, 7, 11, 14, 16, 21), group C (Ad1, 2, 5, 6), group D (Ad8, 9, 10, 13, 15, 17, 19, 20, 22-30), and group E (Ad4) (M. Green, J. Mackey, W. Wold, and P. Rigden, Virology, in press). Group A Ads are highly oncogenic in newborn hamsters, group B Ads are weakly oncogenic, and other Ads are nononcogenic. However, most or all Ads transform cultured cells. We have studied the homology of Ad5, Ad7, and Ad12 transforming restriction endonuclease DNA fragments with DNAs of 29 Ad types. Ad5 HindIII-G (map position 0-7.3), Ad7 XhoI-C (map position 0-10.8), and Ad12 (strain Huie) EcoRI-C (map position 0-16) and SalI-C (map position 0-10.6) fragments were purified, labeled in vitro (nick translation), and annealed with DNAs of Ad1 to Ad16, Ad18 to Ad24, and Ad26 to Ad31. Hybrids were assayed by using hydroxylapatite. Ad5 HindIII-G hybridized 98 to 100% with DNAs of group C Ads, but only 1 to 15% with DNAs of other types. Ad7 XhoI-C fragment hybridized 85 to 99% with DNAs of group B Ads, but only 6 to 21% with DNAs of other types. Ad12 (Huie) EcoRI-C hybridized 53 to 68% with DNAs of five other Ad12 strains, 53% with Ad18 DNA, 56% with Ad31 DNA, but only 3 to 13% with DNAs of other types. In vitro-labeled Ad12 (Huie) SalI-C hybridized 35 to 71% with DNAs of 6 other Ad12 strains, 44% with Ad18 DNA, 52% with Ad31 DNA, but only 2 to 7% with DNAs Ad7, Ad2, Ad26, or Ad4. When assayed using S-1 nuclease, SalI-C annealed 17 to 44% with DNAs of group A Ads. The melting temperatures of the hybrids of Ad5 HindIII-G with all group C Ad DNAs were 84 degrees C in 0.12 M sodium phosphate (pH 6.8). The melting temperature of the Ad12 (Huie) EcoRI-C hybrid with Ad12 (Huie) DNA was 83 degrees C, but was only 71 to 77 degrees C with DNAs of other group A Ads. Thus, group C and group B Ads both have very homologous transforming regions that are not represented in DNAs of non-group C Ads or non-group B Ads, respectively. Similarily, group A Ads have unique but less homologous transforming regions. These different transforming nucleotide sequences may be reflected in the different oncogenic properties of group A, B, and C Ads.  相似文献   

14.
The patterns and sites of integration of adenovirus type 12 (Ad12) DNA were determined in three lines of Ad12-transformed hamster cells and in two lines of Ad12-induced hamster tumor cells. The results of a detailed analysis can be summarized as follows. (i) All cell lines investigated contained multiple copies (3 to 22 genome equivalents per cell in different lines) of the entire Ad12 genome. In addition, fragments of Ad12 DNA also persisted separately in non-stoichiometric amounts. (ii) All Ad12 DNA copies were integrated into cellular DNA. Free viral DNA molecules did not occur. The terminal regions of Ad12 DNA were linked to cellular DNA. The internal parts of the integrated viral genomes, and perhaps the entire viral genome, remained colinear with virion DNA. (iii) Except for line HA12/7, there were fewer sites of integration than Ad12 DNA molecules persisting. This finding suggested either that viral DNA was integrated at identical sites in repetitive DNA or, more likely, that one or a few viral DNA molecules were amplified upon integration together with the adjacent cellular DNA sequences, leading to a serial arrangement of viral DNA molecules separated by cellular DNA sequences. Likewise, in the Ad12-induced hamster tumor lines (CLAC1 and CLAC3), viral DNA was linked to repetitive cellular sequences. Serial arrangement of Ad12 DNA molecules in these lines was not likely. (iv) In general, true tandem integration with integrated viral DNA molecules directly abutting each other was not found. Instead, the data suggested that the integrated viral DNA molecules were separated by cellular or rearranged viral DNA sequences. (v) The results of hybridization experiments, in which a highly specific probe (143-base pair DNA fragment) derived from the termini of Ad12 DNA was used, were not consistent with models of integration involving true tandem integration of Ad12 DNA or covalent circularization of Ad12 DNA before insertion into the cellular genome. (vi) Evidence was presented that a small segment at the termini of the integrated Ad12 DNA in cell lines HA12/7, T637, and A2497-3 was repeated several times. The exact structures of these repeat units remained to be determined. The occurrence of these units might reflect the mechanism of amplification of viral and cellular sequences in transformed cell lines.  相似文献   

15.
The level of DNA methylation in adenovirus type 2 (Ad2) and type 12 (Ad12) DNA was determined by comparing the cleavage patterns generated by the isoschizomeric restriction enzymes HpaII and MspI. As previously reported virion DNA of Ad2 and Ad12 is not methylated. Parental or newly synthesized Ad2 DNA in productively infected human KB or HEK cells is not methylated either, nor is the integrated form of Ad2 DNA in productively infected cells. Hamster cells and Muntiacus muntjak cells are abortively infected by Ad12. We have not detected methylation of Ad12 DNA in hamster or Muntiacus muntjak cells. An inverse correlation between the level of methylation and the extent of expression of viral DNA in Ad12-transformed hamster cells has been described earlier. A similar relation has been found for the EcoRI fragment B of Ad2 DNA which is not methylated but is expressed as the Ad2 DNA-binding (72K) protein in the Ad2-transformed hamster line HE1. Conversely, the same segment is completely methylated in lines HE2 and HE3, and there is apparently no evidence for the expression of the 72K protein in these cell lines.  相似文献   

16.
17.
Spontaneously arising morphological revertants of the adenovirus type 12 (Ad12)-transformed hamster cell line T637 had been previously isolated, and it had been demonstrated that in these revertants varying amounts of the integrated Ad12 genome were eliminated from the host genome. In this report, the patterns of persistence of the viral genome in the revertants were analyzed in detail. In some of the revertant cell lines, F10, TR3, and TR7, all copies of Ad12 DNA integrated in line T637 were lost. In lines TR1, -2, -4 to -6, -8 to -10, and -13 to -16, only the right-hand portion of one Ad12 genome was preserved; it consisted of the intact right segment of Ad12 DNA and was integrated at the same site as in line T637. In revertant lines G12, TR11, and TR12, one Ad12 DNA and varying parts of a second viral DNA molecule persisted in the host genome. These patterns of persistence of Ad12 DNA molecules in different revertants supported a model for a mode of integration of Ad12 DNA in T637 hamster cells in which multiple (20 to 22) copies of the entire Ad12 DNA were serially arranged, separated from each other by stretches of cellular DNA. The occurrence of such revertants demonstrated that foreign DNA sequences could not only be acquired but could also be lost from eucaryotic genomes. There was very little, if any, expression of Ad12-specific DNA sequences in the revertant lines TR7 and TR12. Moreover, Ad12 DNA sequences which were found to be undermethylated in line T637 were completely methylated in the revertant cell lines G12, TR11, TR12, and TR2. These findings were consistent with the absence of T antigen from the revertant lines reported earlier. Hence it was conceivable that the expression of integrated viral DNA sequences was somehow dependent on their positions in the cellular genome. In cell line TR637, the early segments of Ad12 DNA were expressed and undermethylated; conversely, in the revertant lines G12, TR11, TR12, and TR2, the same segments appeared to be expressed to a limited extent and were strongly methylated.  相似文献   

18.
A serological analysis has been made of the capsid antigens hexon and fiber from 17 Ad5-Ad2+ND1 recombinants that enables us to determine the phenotype of the recombinants. By correlation of this data with the genetic and physical maps of the adenovirus genome, obtained by recombination and restriction endonuclease analysis, the genes coding for the hexon and fiber have been assigned to specific locations on the adenovirus DNA.  相似文献   

19.
D Eick  B Kemper    W Doerfler 《The EMBO journal》1983,2(11):1981-1986
In the DNA of the adenovirus type 12 (Ad12)-transformed hamster cell line T637 approximately 20-22 viral DNA molecules per cell are covalently linked to cellular DNA. Spontaneously arising morphological revertants of T637 cells have lost the bulk of the viral DNA. We have been able to mimic the excision event of viral DNA, as it occurs during reversion, by autoincubation of isolated nuclei from T637 cells. The same Ad12 DNA sequences, which had been deleted in morphological revertants, proved highly sensitive to endogenous nucleases in isolated nuclei of T637 cells. Viral DNA sequences, which persisted in the revertants, are resistant to endogenous nucleases in isolated T637 nuclei. All attempts to clone the nuclease-sensitive sites of Ad12 DNA in cell line T637 have so far failed. After denaturation and renaturation of T637 DNA followed by treatment with S1 nuclease, large fold-back structures of DNA have been found. These snap-back structures were derived from precisely those viral DNA restriction fragments which were uncloneable. The fragments containing palindromic sequences were both highly sensitive to endogenous nucleases in isolated T637 nuclei and were absent from the DNA of all revertant cell lines. Moreover, the palindromic sequences are susceptible to the phage T4-specific endonuclease VII which specifically attacks cruciform structures in DNA. The peculiar structures at the termini of integrated Ad12 DNA molecules are highly sensitive to endogenous nucleases in isolated nuclei. These nucleases may be related to the reversion event.  相似文献   

20.
G Orend  I Kuhlmann    W Doerfler 《Journal of virology》1991,65(8):4301-4308
The establishment of de novo-generated patterns of DNA methylation is characterized by the gradual spreading of DNA methylation (I. Kuhlmann and W. Doerfler, J. Virol. 47:631-636, 1983; M. Toth, U. Lichtenberg, and W. Doerfler, Proc. Natl. Acad. Sci. USA 86:3728-3732, 1989; M. Toth, U. Müller, and W. Doerfler J. Mol. Biol. 214:673-683, 1990). We have used integrated adenovirus type 12 (Ad12) genomes in hamster tumor cells as a model system to study the mechanism of de novo DNA methylation. Ad12 induces tumors in neonate hamsters, and the viral DNA is integrated into the hamster genome, usually nearly intact and in an orientation that is colinear with that of the virion genome. The integrated Ad12 DNA in the tumor cells is weakly methylated at the 5'-CCGG-3' sequences. These sequences appear to be a reliable indicator for the state of methylation in mammalian DNA. Upon explantation of the tumor cells into culture medium, DNA methylation at 5'-CCGG-3' sequences gradually spreads across the integrated viral genomes with increasing passage numbers of cells in culture. Methylation is reproducibly initiated in the region between 30 and 75 map units on the integrated viral genome and progresses from there in either direction on the genome. Eventually, the genome is strongly methylated, except for the terminal 2 to 5% on either end, which remains hypomethylated. Similar observations have been made with tumor cell lines with different sites of Ad12 DNA integration. In contrast, the levels of DNA methylation do not seem to change after tumor cell explanation in several segments of hamster cell DNA of the unique or repetitive type. Restriction (HpaII) and Southern blot experiments were performed with selected cloned hamster cellular DNA probes. The data suggest that in the integrated foreign DNA, there exist nucleotide sequences or structures or chromatin arrangements that can be preferentially recognized by the system responsible for de novo DNA methylation in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号