首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic assembly of vaccinia virus begins with the transformation of a two-membraned cisterna derived from the intermediate compartment between the endoplasmic reticulum and the Golgi complex. This cisterna develops into a viral crescent which eventually forms a spherical immature virus (IV) that matures into the intracellular mature virus (IMV). Using immunoelectron microscopy, we determined the subcellular localization of p32 and p14, two membrane-associated proteins of vaccinia virus. p32 was associated with vaccinia virus membranes at all stages of virion assembly, starting with the viral crescents, as well as with the membranes which accumulated during the inhibition of assembly by rifampin. There was also low but significant labelling of membranes of some cellular compartments, especially those in the vicinity of the Golgi complex. In contrast, anti-p14 labelled neither the crescents nor the IV but gave strong labelling of an intermediate form between IV and IMV and was then associated with all later viral forms. This protein was also not significantly detected on identifiable cellular membranes. Both p32 and p14 were abundantly expressed on the surface of intact IMV. Our data are consistent with a model whereby p32 would become inserted into cellular membranes before being incorporated into the crescents whereas p14 would be posttranslationally associated with the viral outer membrane at a specific later stage of the viral life cycle.  相似文献   

2.
The assembly of the intracellular mature virus (IMV) of vaccinia virus (VV), the prototype member of the poxviridae, is poorly understood and controversial. We have previously proposed that the IMV is composed of a continuous double-membraned cisterna derived from the smooth ER, whereby the genome-containing core is enwrapped by a part of this cisterna. In the present study we characterize a mutant virus in which the synthesis of the major core protein A10L can be conditionally expressed. Without A10L, IMVs are not made; immature viruses (IVs) and regularly stacked membrane structures that contain viral DNA, accumulate instead. By immunolabelling of thawed cryo-sections these stacks contain most of the viral core proteins and low levels of viral membrane proteins. Importantly, the stacked membranes could be labelled with antibodies to an ER marker protein, implying that they are derived from this cellular compartment. By electron tomography (ET) on semi-thin cryo-sections we show that the membranes of the stacks are continuous with the membranes of the IVs. Direct continuities with ER cisternae, to which the stacks are tightly apposed, were, however, not unequivocally seen. Finally, ET revealed how the IV membranes separated to become two-membrane profiles. Taken together, this study shows that VV core proteins and the viral DNA can coassemble onto ER-derived membranes that are continuous with the membranes of the IVs.  相似文献   

3.
Chiu WL  Chang W 《Journal of virology》2002,76(19):9575-9587
Vaccinia virus, a member of the poxvirus family, contains a conserved J1R open reading frame that encodes a late protein of 17.8 kDa. The 18-kDa J1R protein is associated mainly with the membrane fraction of intracellular mature virus particles. This study examines the biological function of J1R protein in the vaccinia virus life cycle. A recombinant vaccinia virus was constructed to conditionally express J1R protein in an isopropyl-beta-D-galactopyranoside (IPTG)-inducible manner. When J1R is not expressed during vaccinia virus infection, the virus titer is reduced approximately 100-fold. In contrast, J1R protein is not required for viral gene expression, as indicated by protein pulse-labeling. J1R protein is also not required for DNA processing, as the resolution of the concatemer junctions of replicated viral DNA was detected without IPTG. A deficiency of J1R protein caused a severe delay in the processing of p4a and p4b into mature core proteins 4a and 4b, indicating that J1R protein participates in virion morphogenesis. Infected cells grown in the absence of IPTG contained very few intracellular mature virions in the cytoplasm, and enlarged viroplasm structures accumulated with viral crescents attached at the periphery. Abundant intermediate membrane structures of abnormal shapes were observed, and many immature virions were either empty or partially filled, indicating that J1R protein is important for DNA packaging into immature virions. J1R protein also coimmunoprecipited with A45R protein in infected cells. In summary, these results indicate that vaccinia virus J1R is a membrane protein that is required for virus growth and plaque formation. J1R protein interacts with A45R protein and performs an important role during immature virion formation in cultured cells.  相似文献   

4.
Vaccinia virus (VV) morphogenesis commences with the formation of lipid crescents that grow into spherical immature virus (IV) and then infectious intracellular mature virus (IMV) particles. Early studies proposed that the lipid crescents were synthesized de novo and matured into IMV particles that contained a single lipid bilayer (S. Dales and E. H. Mosbach, Virology 35:564–583, 1968), but a more recent study reported that the lipid crescent was derived from membranes of the intermediate compartment (IC) and contained a double lipid bilayer (B. Sodiek et al., J. Cell Biol. 121:521–541, 1993). In the present study, we used high-resolution electron microscopy to reinvestigate the structures of the lipid crescents, IV, and IMV particles in order to determine if they contain one or two membranes. Examination of thin sections of Epon-embedded, VV-infected cells by use of a high-angular-tilt series of single sections, serial-section analysis, and high-resolution digital-image analysis detected only a single, 5-nm-thick lipid bilayer in virus crescents, IV, and IMV particles that is covered by a 8-nm-thick protein coat. In contrast, it was possible to discern tightly apposed cellular membranes, each 5 nm thick, in junctions between cells and in the myelin sheath of Schwann cells around neurons. Serial-section analysis and angular tilt analysis of sections detected no continuity between virus lipid crescents or IV particles and cellular membrane cisternae. Moreover, crescents were found to form at sites remote from IC membranes—namely, within the center of virus factories and within the nucleus—demonstrating that crescent formation can occur independently of IC membranes. These data leave unexplained the mechanism of single-membrane formation, but they have important implications with regard to the mechanism of entry of IMV and extracellular enveloped virus into cells; topologically, a one-to-one membrane fusion suffices for delivery of the IMV core into the cytoplasm. Consistent with this, we have demonstrated previously by confocal microscopy that uncoated virus cores within the cytoplasm lack the IMV surface protein D8L, and we show here that intracellular cores lack the surface protein coat and lipid membrane.  相似文献   

5.
The use of two-dimensional gel electrophoresis has identified the gene products A14L (p16) and A13L (p8) as abundant membrane proteins of the first infectious form of vaccinia virus, the intracellular mature virus (IMV; O. N. Jensen, T. Houthaeve, A. Shevchenko, S. Cudmore, T. Ashford, M. Mann, G. Griffiths, J. Krijnse Locker, J. Virol. 70:7485-7497, 1996). In this study, these two proteins were characterized in detail. In infected cells, both proteins localize not only to the viral membranes but also to tubular-cisternal membranes of the intermediate compartment, defined by the use of antibodies to either rab1A or p21, which colocalize with rab1A (J. Krijnse Locker, S. Schleich, D. Rodriguez, B. Goud, E. J. Snijder, and G. Griffiths, J. Biol. Chem. 271:14950-14958, 1996). Both proteins appear to reach this destination via cotranslational insertion into the rough endoplasmic reticulum, as shown by in vitro translation and translocation experiments. Whereas p16 probably spans the membrane twice, p8 is inserted into the membrane by means of its single NH2-terminal hydrophobic domain, adopting a topology which leaves the C terminus exposed to the cytoplasm. Combined immunocytochemical and biochemical data show that p16 is a member of the inner of the two IMV membrane layers, whereas p8 localizes to both the inner and the outer membrane. These findings are discussed with respect to our model of IMV membrane assembly.  相似文献   

6.
We introduce a novel approach for combining immunogold labelling with cryoelectron microscopy of thin vitrified specimens. The method takes advantage of the observation that particles in suspension are concentrated at the air-water interface and remain there during the subsequent immunogold labelling procedure. Subsequently, a thin aqueous film can be formed that is vitrified and observed by cryoelectron microscopy. In our view, a key early step in the assembly of vaccinia virus, the formation of the spherical immature virus, involves the formation of a specialized cisternal domain of the intermediate compartment between the endoplasmic reticulum and the Golgi. Using this novel cryoelectron microscopy approach, we show that in the intracellular mature virus (IMV) the core remains surrounded by a membrane cisterna that comes off the viral core upon treatment with dithiothreitol, exposing an antigen on the surface of the viral core. Complementary protease studies suggest that the IMV may be sealed not by membrane fusion but by a proteinaceous structure that interrupts the outer membrane. We also describe the structure and membrane topology of the second infectious form of vaccinia, the extracellular enveloped virus, and confirm that this form possesses an extra membrane overlying the IMV.  相似文献   

7.
Morphogenesis of vaccinia virus begins with the appearance of crescent-shaped membrane precursors of immature virions in cytoplasmic factories. During the initial characterization of the product of the L2R reading frame, we discovered that it plays an important role in crescent formation. The L2 protein was expressed early in infection and was associated with the detergent-soluble membrane fraction of mature virions, consistent with two potential membrane-spanning domains. All chordopoxviruses have L2 homologs, suggesting an important function. Indeed, we were unable to isolate an infectious L2R deletion mutant. Consequently, we constructed an inducible mutant with a conditional lethal phenotype. When L2 expression was repressed, proteolytic processing of the major core proteins and the A17 protein, which is an essential component of the immature virion membrane, failed to occur, suggesting an early block in viral morphogenesis. At 8 h after infection in the presence of inducer, immature and mature virions were abundantly seen by electron microscopy. In contrast, those structures were rare in the absence of inducer and were replaced by large, dense aggregates of viroplasm. A minority of these aggregates had short spicule-coated membranes, which resembled the beginnings of crescent formation, at their periphery. These short membrane segments at the edge of the dense viroplasm increased in number at later times, and some immature virions were seen. Although the L2 protein was not detected under nonpermissive conditions, minute amounts could account for stunted and delayed viral membrane formation. These findings suggested that L2 is required for the formation or elongation of crescent membranes.  相似文献   

8.
Vaccinia virus is the prototypical member of the family Poxviridae. Three morphologically distinct forms are produced during infection: intracellular mature virions (IMV), intracellular enveloped virions (IEV), and extracellular enveloped virions (EEV). Two viral proteins, F12 and A36, are found exclusively on IEV but not on IMV and EEV. Analysis of membranes from infected cells showed that F12 was only associated with membranes and is not an integral membrane protein. A yeast two-hybrid assay revealed an interaction between amino acids 351 to 458 of F12 and amino acids 91 to 111 of A36. We generated a recombinant vaccinia virus that expresses an F12, which lacks residues 351 to 458. Characterization of this recombinant revealed a small-plaque phenotype and a subsequent defect in virus release similar to a recombinant virus that had F12L deleted. In addition, F12 lacking residues 351 to 458 was unable to associate with membranes in infected cells. These results suggest that F12 associates with IEV through an interaction with A36 and that this interaction is critical for the function of F12 during viral egress.  相似文献   

9.
The orthopoxvirus gene p4c has been identified in the genome of the vaccinia virus strain Western Reserve. This gene encodes the 58-kDa structural protein P4c present on the surfaces of the intracellular mature virus (IMV) particles. The gene is disrupted in the genome of cowpox virus Brighton Red (BR), demonstrating that although the P4c protein may be advantageous for virus replication in vivo, it is not essential for virus replication in vitro. Complementation and recombination analyses with the p4c gene have shown that the P4c protein is required to direct the IMV into the A-type inclusions (ATIs) produced by cowpox virus BR. The p4c gene is highly conserved among most members of the orthopoxvirus genus, including viruses that produce ATIs, such as cowpox, ectromelia, and raccoonpox viruses, as well as those such as variola, monkeypox, vaccinia, and camelpox viruses, which do not. The conservation of the p4c gene among the orthopoxviruses, irrespective of their capacities to produce ATIs, suggests that the P4c protein provides functions in addition to that of directing IMV into ATIs. These findings, and the presence of the P4c protein in IMV but not extracellular enveloped virus (D. Ulaeto, D. Grosenbach, and D. E. Hruby, J. Virol. 70:3372-3377, 1996), suggest a model in which the P4c protein may play a role in the retrograde movement of IMV particles, thereby contributing to the retention of IMV particles within the cytoplasm and within ATIs when they are present. In this way, the P4c protein may affect both viral morphogenesis and processes of virus dissemination.  相似文献   

10.
Previous data have shown that reducing agents disrupt the structure of vaccinia virus (vv). Here, we have analyzed the disulfide bonding of vv proteins in detail. In vv-infected cells cytoplasmically synthesized vv core proteins became disulfide bonded in the newly assembled intracellular mature viruses (IMVs). vv membrane proteins also assembled disulfide bonds, but independent of IMV formation and to a large extent on their cytoplasmic domains. If disulfide bonding was prevented, virus assembly was only partially impaired as shown by electron microscopy as well as a biochemical assay of IMV formation. Under these conditions, however, the membranes around the isolated particles appeared less stable and detached from the underlying core. During the viral infection process the membrane proteins remained disulfide bonded, whereas the core proteins were reduced, concomitant with delivery of the cores into the cytoplasm. Our data show that vv has evolved an unique system for the assembly of cytoplasmic disulfide bonds that are localized both on the exterior and interior parts of the IMV.  相似文献   

11.
In 1968 it was proposed that the first membrane structures that assemble in vaccinia virus-infected cells, the crescents, are formed by a unique viral mechanism in which a single membrane bilayer is synthesized de novo. 25 years later it was suggested that the vaccinia membranes are derived from an organelle that is part of the host cell's secretory pathway, the intermediate compartment (IC), and that the viral crescents are made of two tightly apposed membranes rather than a single bilayer. Several independent studies have subsequently shown that membrane proteins of the intracellular mature virus (IMV) insert co-translationally into endoplasmic reticulum (ER) membranes, and are targeted to and retained in the IC, the compartment from which the virus acquires its membranes. Furthermore, a recent study on the entry of both the IMV and extracellular enveloped virus (EEV) suggests that these viruses do not enter by a simple fusion mechanism, consistent with the idea that both are surrounded by more than one lipid bilayer.  相似文献   

12.
Hepatitis C virus core protein is the viral nucleocapsid of hepatitis C virus. Interaction of core with cellular membranes like endoplasmic reticulum (ER) and lipid droplets (LD) appears to be involved in viral assembly. However, how these interactions with different cellular membranes are regulated is not well understood. In this study, we investigated how palmitoylation, a post-translational protein modification, can modulate the targeting of core to cellular membranes. We show that core is palmitoylated at cysteine 172, which is adjacent to the transmembrane domain at the C-terminal end of core. Site-specific mutagenesis of residue Cys172 showed that palmitoylation is not involved in the maturation process carried out by the signal peptide peptidase or in the targeting of core to LD. However, palmitoylation was shown to be important for core association with smooth ER membranes and ER closely surrounding LDs. Finally, we demonstrate that mutation of residue Cys172 in the J6/JFH1 virus genome clearly impairs virion production.  相似文献   

13.
14.
We have characterized a temperature-sensitive mutant of vaccinia virus, ts16, originally isolated by Condit et al. (Virology 128:429-443, 1983), at the permissive and nonpermissive temperatures. In a previous study by Kane and Shuman (J. Virol 67:2689-2698, 1993), the mutation of ts16 was mapped to the I7 gene, encoding a 47-kDa protein that shows partial homology to the type II topoisomerase of Saccharomyces cerevisiae. The present study extends previous electron microscopy analysis, showing that in BSC40 cells infected with ts16 at the restrictive temperature (40 degrees C), the assembly was arrested at a stage between the spherical immature virus and the intracellular mature virus (IMV). In thawed cryosections, a number of the major proteins normally found in the IMV were subsequently localized to these mutant particles. By using sucrose density gradients, the ts16 particles were purified from cells infected at the permissive and nonpermissive temperatures. These were analyzed by immunogold labelling and negative-staining electron microscopy, and their protein composition was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. While the ts16 virus particles made at the permissive temperature appeared to have a protein pattern identical to that of wild-type IMV, in the mutant particles the three core proteins, p4a, p4b, and 28K, were not proteolytically processed. Consistent with previous data the sucrose-purified particles could be labelled with [3H]thymidine. In addition, anti-DNA labelling on thawed cryosections suggested that most of the mutant particles had taken up DNA. On thawed cryosections of cells infected at the permissive temperature, antibodies to I7 labelled the virus factories, the immature viruses, and the IMVs, while under restrictive conditions these structures were labelled much less, if at all. Surprisingly, however, by Western blotting (immunoblotting) the I7 protein was present in similar amounts in the defective particles and in the IMVs isolated at the permissive temperature. Finally, our data suggest that at the nonpermissive temperature the assembly of ts16 is irreversibly arrested in a stage at which the DNA is in the process of entering but before the particle has completely sealed, as monitored by protease experiments.  相似文献   

15.
Assembly of type C retroviruses such as Moloney murine leukemia virus (M-MuLV) ordinarily occurs at the plasma membranes of infected cells and absolutely requires the particle core precursor protein, Pr65gag. Previously we have shown that Pr65gag is membrane associated and that at least a portion of intracellular Pr65gag protein appears to be routed to the plasma membrane by a vesicular transport pathway. Here we show that intracellular particle formation can occur in M-MuLV-infected cells. M-MuLV immature particles were observed by electron microscopy budding into and within rough endoplasmic reticulum, Golgi, and vacuolar compartments. Biochemical fractionation studies indicated that intracellular Pr65gag was present in nonionic detergent-resistant complexes of greater than 150S. Additionally, viral RNA and polymerase functions appeared to be associated with intracellular particles, as were Gag-beta-galactosidase fusion proteins which have the capacity to be incorporated into virions. Immature intracellular particles in postnuclear lysates could be proteolytically processed in vitro to mature forms, while extracellular immature M-MuLV particles remained immature as long as 10 h during incubations. The occurrence of M-MuLV-derived intracellular particles demonstrates that Pr65gag can associate with intracellular membranes and indicates that if a plasma membrane Pr65gag receptor exists, it also can be found in other membrane compartments. These results support the hypothesis that intracellular particles may serve as a virus reservoir during in vivo infections.  相似文献   

16.
In a series of papers, we have provided evidence that during its assembly vaccinia virus is enveloped by a membrane cisterna that originates from a specialized, virally modified, smooth-membraned domain of the endoplasmic reticulum (ER). Recently, however, Hollinshead et al. (M. Hollinshead, A. Vanderplasschen, G. I. Smith, and D. J. Vaux, J. Virol. 73:1503-1517, 1999) argued against this hypothesis, based on their interpretations of thin-sectioned material. The present article is the first in a series of papers that describe a comprehensive electron microscopy (EM) analysis of the vaccinia Intracellular Mature Virus (IMV) and the process of its assembly in HeLa cells. In this first study, we analyzed the IMV by on-grid staining, cryo-scanning EM (SEM), and cryo-transmission EM. We focused on the structure of the IMV particle, both after isolation and in the context of viral entry. For the latter, we used high-resolution cryo-SEM combined with cryofixation, as well as a novel approach we developed for investigating vaccinia IMV bound to plasma membrane fragments adsorbed onto EM grids. Our analysis revealed that the IMV is made up of interconnected cisternal and tubular domains that fold upon themselves via a complex topology that includes an S-shaped fold. The viral tubules appear to be eviscerated from the particle during viral infection. Since the structure of the IMV is the result of a complex assembly process, we also provide a working model to explain how a specialized smooth-ER domain can be modulated to form the IMV. We also present theoretical arguments for why it is highly unlikely that the IMV is surrounded by only a single membrane.  相似文献   

17.
18.
Previous studies demonstrated that antibodies to live vaccinia virus infection are needed for optimal protection against orthopoxvirus infection. The present report is the first to compare the protective abilities of individual and combinations of specific polyclonal and monoclonal antibodies that target proteins of the intracellular (IMV) and extracellular (EV) forms of vaccinia virus. The antibodies were directed to one IMV membrane protein, L1, and to two outer EV membrane proteins, A33 and B5. In vitro studies showed that the antibodies to L1 neutralized IMV and that the antibodies to A33 and B5 prevented the spread of EV in liquid medium. Prophylactic administration of individual antibodies to BALB/c mice partially protected them against disease following intranasal challenge with lethal doses of vaccinia virus. Combinations of antibodies, particularly anti-L1 and -A33 or -L1 and -B5, provided enhanced protection when administered 1 day before or 2 days after challenge. Furthermore, the protection was superior to that achieved with pooled immune gamma globulin from human volunteers inoculated with live vaccinia virus. In addition, single injections of anti-L1 plus anti-A33 antibodies greatly delayed the deaths of severe combined immunodeficiency mice challenged with vaccinia virus. These studies suggest that antibodies to two or three viral membrane proteins optimally derived from the outer membranes of IMV and EV, may be beneficial for prophylaxis or therapy of orthopoxvirus infections.  相似文献   

19.
Location of the Glycoprotein in the Membrane of Sindbis Virus   总被引:26,自引:0,他引:26  
SINDBIS virus, which is transmitted by arthropods, consists of a nucleoprotein core within a lipid-containing envelope. Its components assemble at a cellular membrane and virus particles form by an outfolding of this membrane. Thus, such viruses provide useful systems for studies of the structure and synthesis of membranes. The Sindbis virus particle contains only two proteins, one associated with the viral envelope and the other with the viral RNA in the core, or nucleocapsid1. The protein associated with the membrane is a glycoprotein, whereas the core protein contains no carbohydrate2. The exact location of the glycoprotein within the viral envelope has not been determined, nor has information been obtained about the function of the carbohydrate in the virion. The results described here indicate that the spikes which cover the surface of the virion are glycoprotein in nature.  相似文献   

20.
The previously uncharacterized A30L gene of vaccinia virus has orthologs in all vertebrate poxviruses but no recognizable nonpoxvirus homologs or functional motifs. We determined that the A30L gene was regulated by a late promoter and encoded a protein of approximately 9 kDa. Immunoelectron microscopy of infected cells indicated that the A30L protein was associated with viroplasm enclosed by crescent and immature virion membranes. The A30L protein was also present in mature virions and was partially released by treatment with a nonionic detergent and reducing agent, consistent with a location in the matrix between the core and envelope. To determine the role of the A30L protein, we constructed a stringent conditional lethal mutant with an inducible A30L gene. In the absence of inducer, synthesis of viral early and late proteins occurred but the proteolytic processing of certain core proteins was inhibited, suggesting an assembly block. Inhibition of virus maturation was confirmed by electron microscopy. Under nonpermissive conditions, we observed aberrant large, dense, granular masses of viroplasm with clearly defined margins; viral crescent membranes that appeared normal except for their location at a distance from viroplasm; empty immature virions; and an absence of mature virions. The data indicated that the A30L protein is needed for vaccinia virus morphogenesis, specifically the association of the dense viroplasm with viral membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号