首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of the hydrophobic pulmonary surfactant protein SP-C with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and DPPC:DPPG (7:3, mol:mol) in spread monolayers at the air-water interface has been studied. At low concentrations of SP-C (about 0.5 mol% or 3 weight%protein) the protein-lipid films collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At initial protein concentrations higher than 0.8 mol%, or 4 weight%, the isotherms displayed kinks at surface pressures of about 50 mN.m-1 in addition to the collapse plateaux at the higher pressures. The presence of less than 6 mol%, or 27 weight%, of SP-C in the protein-lipid monolayers gave a positive deviation from ideal behavior of the mean areas in the films. Analyses of the mean areas in the protein-lipid films as functions of the monolayer composition and surface pressure showed that SP-C, associated with some phospholipid (about 8-10 lipid molecules per molecule of SP-C), was squeezed out from the monolayers at surface pressures of about 55 mN.m-1. The results suggest a potential role for SP-C to modify the composition of the monolayer at the air-water interface in the alveoli.  相似文献   

2.
Spread binary monolayers of surfactant-associated proteins SP-B and SP-C were formed at the air-water interface. Surface pressure measurements showed no interactions between the hydrophobic proteins. The effects of a mixture of SP-B plus SP-C (2:1, w/w) on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and DPPC:DPPG (7:3, mol:mol) were studied. During compression of ternary and quaternary films, containing less than 0.4 mol% or 5 weight% total protein, the proteins were not squeezed out and appeared to remain associated with the film until collapse at surface pressures of about 65-70 mN.m-1. At initial concentrations of total protein of about 0.9 mol% or 10 weight%, exclusion of protein-lipid complexes was observed at 40-50 mN.m-1. Larger amounts of phospholipid were removed by proteins from (SP-B:SP-C)/DPPG films than from (SP-B:SP-C)/DPPC ones. Separate squeeze-out of SP-B (or SP-B plus DPPC) at about 40 mN.m-1, followed by exclusion of SP-C (or SP-C plus DPPC) at about 50 mN.m-1, was observed in (SP-B:SP-C)/DPPC films. This led to a conclusion that there was independent behavior of SP-B and SP-C in (SP-B:SP-C)/DPPC monolayers. The quaternary (SP-B:SP-C)/(DPPC:DPPG) films showed qualitatively similar process of squeeze-out of the proteins. In the ternary mixtures of SP-B plus SP-C with DPPG separate exclusion of SP-B was not detected; rather, the data was consistent with exclusion of a (SP-B:SP-C)/DPPG complex at about 50 mN.m-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effects of pulmonary surfactant protein SP-B on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), and a mixture of DPPC:DPPG (7:3, mol:mol) were studied using spread films at the air-water interface. The addition of SP-B to the phospholipid monolayers gave positive deviations from additivity of the mean areas in the films. At low protein concentrations (less than 45% amino acid residues which corresponds to 0.5 mol% or 10 weight% SP-B) monolayers of SP-B/DPPC, SP-B/DPPG and SP-B/(DPPC:DPPG) collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At higher concentrations of SP-B in the protein-lipid monolayers, kink points appeared in the isotherms at about 40-45 mN.m-1, implying possible exclusion of material from the films, hence, changes in the original monolayer compositions. Calculated analyses of the monolayer compositions as a function of surface pressure indicated that nearly pure SP-B, associated with small amounts of phospholipid (2-3 lipid molecules per SP-B dimer), was lost from SP-B/DPPC, SP-B/DPPG, and SP-B/(DPPC:DPPG) films at surface pressures higher than 40-45 mN.m-1. The results are consistent with a low effectiveness of SP-B in removing saturated phospholipids, DPPC or DPPG, from the spread SP-B/phospholipid films.  相似文献   

4.
The interaction of the pulmonary surfactant protein SP-A fluorescently labeled with Texas Red (TR-SP-A) with monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol 7:3 w/w has been investigated. The monolayers were spread on aqueous subphases containing TR-SP-A. TR-SP-A interacted with the monolayers of DPPC to accumulate at the boundary regions between liquid condensed (LC) and liquid expanded (LE) phases. Some TR-SP-A appeared in the LE phase but not in the LC phase. At intermediate surface pressures (10-20 mN/m), the protein caused the occurrence of more, smaller condensed domains, and it appeared to be excluded from the monolayers at surface pressure in the range of 30-40 mN/m. TR-SP-A interaction with DPPC/dipalmitoylphosphatidylglycerol monolayers was different. The protein did not appear in either LE or LC but only in large aggregates at the LC-LE boundary regions, a distribution visually similar to that of fluorescently labeled concanavalin A adsorbed onto monolayers of DPPC. The observations are consistent with a selectivity of interaction of SP-A with DPPC and for its accumulation in boundaries between LC and LE phase.  相似文献   

5.
Pulmonary surfactant, a lipid-protein complex, secreted into the fluid lining of lungs prevents alveolar collapse at low lung volumes. Pulmonary surfactant protein C (SP-C), an acylated, hydrophobic, alpha-helical peptide, enhances the surface activity of pulmonary surfactant lipids. Fluorescein-labeled SP-C (F-SP-C) (3, 6, 12 wt%) in dipalmitoylphosphatidylcholine (DPPC), and DPPC:dipalmitoylphosphatidylglycerol (DPPG) [DPPC:DPPG 7:3 mol/mol] in spread monolayers was studied by epifluorescence microscopy. Mass spectometry of F-SP-C indicated that the protein is partially deacylated and labeled with 1 mol fluorescein/1 mol protein. The protein partitioned into the fluid, or liquid expanded, phase. Increasing amounts of F-SP-C in DPPC or DPPC:DPPG monolayers decreased the size and total amounts of the condensed phase at all surface pressures. Calcium (1.6 mM) increased the amount of the condensed phase in monolayers of DPPC:DPPG but not of DPPC alone, and such monolayers were also perturbed by F-SP-C. The study indicates that SP-C perturbs the packing of neutral and anionic phospholipid monolayers even when the latter systems are condensed by calcium, indicating that interactions between SP-C and the lipids are predominantly hydrophobic in nature.  相似文献   

6.
Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed. From these data we conclude that 1) SP-A specifically and strongly binds dipalmitoylphosphatidylcholine, 2) SP-A binds the nonpolar group of phospholipids, 3) the second positioned palmitate is involved in dipalmitoylphosphatidylcholine binding, and 4) the specificities of polar groups of dipalmitoylglycerophospholipids also appear to be important for SP-A binding, 5) the phospholipid binding activity of SP-A is dependent upon calcium ions and the integrity of the collagenous domain of SP-A, but not on the oligosaccharide moiety of SP-A. SP-A may play an important role in the regulation of recycling and intra- and extracellular movement of dipalmitoylphosphatidylcholine.  相似文献   

7.
SP-C, a pulmonary surfactant-specific protein, aids the spreading of the main surfactant phospholipid L-alpha-dipalmitoylphosphatidylcholine (DPPC) across air/water interfaces, a process that has possible implications for in vivo function. To understand the molecular mechanism of this process, we have used external infrared reflection-absorption spectroscopy (IRRAS) to determine DPPC acyl chain conformation and orientation as well as SP-C secondary structure and helix tilt angle in mixed DPPC/SP-C monolayers in situ at the air/water interface. The SP-C helix tilt angle changed from approximately 24 degrees to the interface normal in lipid bilayers to approximately 70 degrees in the mixed monolayer films, whereas the acyl chain tilt angle of DPPC decreased from approximately 26 degrees in pure lipid monolayers (comparable to bilayers) to approximately 10 degrees in the mixed monolayer films. The protein acts as a "hydrophobic lever" by maximizing its interactions with the lipid acyl chains while simultaneously permitting the lipids to remain conformationally ordered. In addition to providing a reasonable molecular mechanism for protein-aided spreading of ordered lipids, these measurements constitute the first quantitative determination of SP-C orientation in Langmuir films, a paradigm widely used to simulate processes at the air/alveolar interface.  相似文献   

8.
Fluorescent and modified dark-field microscopies were used to investigate the phase behavior of physiologically relevant lipid/protein monomolecular films containing surfactant protein C(SP-C). Synthetic human SP-C(1-34) was labeled at its N-terminus using the fluorescent probe 6-(((4(4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indacene-3-yl)phenoxy)acetyl)amino)hexanoic acid (BODIPY/TR-X). Using dual fluorescent labeling (lipid and protein) in the monolayers, we have correlated (at physiologically small concentrations of the protein) the lipid phase separation and protein distribution in situ. A comparison of the lipid and protein dye fluorescent micrographs indicates that SP-C(1-34) is preferentially associated with the disordered lipid phase. Three concepts arise from our results. (1) The presence of SP-C alone does not result in the complete dissolution of condensed phase domains in a fashion that we have previously reported for the entire hydrophobic surfactant protein (SP-B/C) fraction (Biophys. J. 77 (1999) 903). Rather, the use of relatively high amounts ( approximately 10 wt.%) of the labeled SP-C protein is needed to reproduce the fluorescence monolayer morphology previously observed for small concentrations ( approximately 1 wt.%) of the natural SP-B/C mixture. (2) Scattered light, dark-field microscopy performed using grazing angle laser illumination reveals the presence of surface-associated, three-dimensional (3D) structures of micrometer-sized dimensions when the labeled BODIPY/TR-X:SP-C(1-34) protein is included in the monolayer, as previously observed with the naturally isolated SP-B/C mixture. The 3D structures are associated exclusively with the presence of the SP-C protein in disordered monolayer phases. (3) To explain these results, we have derived a molecular model accounting for the structure and physico-chemical properties of the SP-C protein in terms of its energetics. The molecular events involved in the SP-C-mediated production of the 3D surface particles are explained using the analogy of a simple molecular machine, namely a loaded spring. This interpretation is supported by an energetic analysis that suggests the major factor contributing to the formation of the 3D particles is the energy liberated by re-expansion of the surrounding phospholipid film into the area vacated by the SP-C protein as it re-orients away from the surface.  相似文献   

9.
Epifluorescence microscopy was used to investigate the interaction of pulmonary surfactant protein A (SP-A) with spread monolayers of porcine surfactant lipid extract (PSLE) containing 1 mol % fluorescent probe (NBD-PC) spread on a saline subphase (145 mM NaCl, 5 mM Tris-HCl, pH 6.9) containing 0, 0.13, or 0.16 microg/ml SP-A and 0, 1.64, or 5 mM CaCl(2). In the absence of SP-A, no differences were noted in PSLE monolayers in the absence or presence of Ca(2+). Circular probe-excluded (dark) domains were observed against a fluorescent background at low surface pressures (pi approximately 5 mN/m) and the domains grew in size with increasing pi. Above 25 mN/m, the domain size decreased with increasing pi. The amount of observable dark phase was maximal at 18% of the total film area at pi approximately 25 mN/m, then decreased to approximately 3% at pi approximately 40 mN/m. The addition of 0.16 microg/ml SP-A with 0 or 1.64 mM Ca(2+) in the subphase caused an aggregation of dark domains into a loose network, and the total amount of dark phase was increased to approximately 25% between pi of 10-28 mN/m. Monolayer features in the presence of 5 mM Ca(2+) and SP-A were not substantially different from those spread in the absence of SP-A, likely due to a self-association and aggregation of SP-A in the presence of higher concentrations of Ca(2+). PSLE films were spread on a subphase containing 0.16 microg/ml SP-A with covalently bound Texas Red (TR-SP-A). In the absence of Ca(2+), TR-SP-A associated with the reorganized dark phase (as seen with the lipid probe). The presence of 5 mM Ca(2+) resulted in an appearance of TR-SP-A in the fluid phase and of aggregates at the fluid/gel phase boundaries of the monolayers. This study suggests that SP-A associates with PSLE monolayers, particularly with condensed or solid phase lipid, and results in some reorganization of rigid phase lipid in surfactant monolayers.  相似文献   

10.
Pulmonary surfactant protein SP-C has been isolated from porcine lungs and treated with dansyl isothiocyanate in chloroform:methanol 2:1 (v/v) solutions,under conditions optimized to introduce a single dansyl group covalently attached to the N-terminalamine group of the protein without loss of its native thioesther-linked palmitic chains. The resulting derivative Dans-SP-C conserves the secondary structure of native SP-C as well as the ability to promote interfacial adsorption of DPPC suspensions and to affect the thermotropic behavior of DPPC bilayers. This derivative can be used to characterize lipid-protein and protein-protein interactions of a native-like SP-C in lipid/protein complexes.  相似文献   

11.
Pulmonary surfactant protein A (SP-A) is an oligomeric glycoprotein that binds dipalmitoylphosphatidylcholine (DPPC). Interactions of rat SP-A and recombinant SP-As with pure and binary monolayers of DPPC and cholesterol were studied using a rhomboid surface balance at 37 degrees C. A marked inflection at equilibrium surface tension (23 mN/m) in surface tension-area isotherm of a pure DPPC film was abolished by rat SP-A. The inflection was decreased and shifted to 18 mN/m with wild-type recombinant SP-A (SP-Ahyp). Both rat SP-A and SP-Ahyp decreased surface area reduction required for pure DPPC films to reach near zero surface tension from 30 to 25%. SP-Ahyp, E195Q,R197D, mutated in carbohydrate recognition domain (CRD) known to be essential for SP-A-vesicle interactions, conveyed a detrimental effect on DPPC surface activity. SP-ADeltaG8-P80, with deletion of collagen-like domain, had little effect. Both SP-Ahyp, C6S (Ser substitution for Cys6) and SP-Ahyp,DeltaN1-A7 (N-terminal segment deletion) which appear mainly as monomers on non-reducing SDS-PAGE analysis, increased required surface area reduction for minimal surface tension. All SP-As reduced collapse surface tension of a pure cholesterol film from 27 to 23 mN/m in the presence of Ca2+. When mixed films were formed by successive spreading of DPPC/SP-A/cholesterol, rat SP-A, SP-Ahyp, or SP-ADeltaG8-P80 blocked the interaction of cholesterol with DPPC; SP-Ahyp,E195Q,R197D could not impede the interaction; SP-Ahyp,C6S or SP-Ahyp,DeltaN1-A7 only partially blocked the interaction, and cholesterol appeared to stabilize SP-Ahyp,C6S-DPPC association. These results demonstrate the importance of CRD and N-terminal dependent oligomerization in SP-A-phospholipid associations. The findings further indicate that SP-A-cholesterol interactions differ from SP-A-DPPC interactions and may be nonspecific.  相似文献   

12.
 Suspensions of dipalmitoylphosphatidylcholine (DPPC) bilayers containing 5, 10 or 20% (w/w) surfactant protein SP-B have been reconstituted and spread at air-liquid interfaces. Compression isotherms of DPPC/SP-B monolayers spread from these preparations were qualitatively comparable to the isotherms of the corresponding DPPC/SP-B monolayers spread from solvents. SP-B was squeezed-out at higher pressures from vesicle-spread films than from solvent-spread monolayers. SP-B caused a marked decrease on the rate of relaxation of DPPC collapse phases to equilibrium pressures in all the lipid/protein films assayed. This stabilizing effect was higher in vesicle-spread than in solvent-spread monolayers. Inclusion in the films of traces of the fluorescent probe NBD-PC (1 mol%) and use of a fluorescent derivative of SP-B labeled with a rhodamine derivative, Texas Red, allowed for direct observation of protein and lipid domains at the interface by epifluorescence microscopy. Upon compression, SP-B altered the packing of phospholipids in the bilayer-spread films, observed as a SP-B-induced reduction of the area of liquid-condensed domains, in a way similar to its effect in solvent-spread monolayers. SP-B was not associated with condensed regions of the films. Fluorescence images from vesicle-spread films showed discrete fluorescent aggregates that could be consistent with the existence of lipid-protein vesicles in close association with the monolayer. Both the retention of SP-B at higher surface pressures and the greater stability of collapse phases of DPPC/SP-B films prepared by spreading from liposomes in comparison to those spread from solvents can be interpreted as a consequence of formation of complex bilayer-monolayer interacting systems. Received: 1 December 1999 / Revised version: 2 March 2000 / Accepted: 2 March 2000  相似文献   

13.
The lung surfactant proteins SP-B and SP-C are pivotal for fast and reversible lipid insertion at the air/liquid interface, a prerequisite for functional lung activity. We used a model system consisting of a preformed monolayer at the air/liquid interface supplemented with surfactant protein SP-B or SP-C and unilamellar vesicles injected into the subphase of a film balance. The content of SP-B or SP-C was similar to that found in lung lavage. In order to elucidate distinct steps of lipid insertion, we measured the time-dependent pressure increase as a function of the initial surface pressure, the temperature and the phosphatidylglycerol content by means of surface tension measurements and scanning force microscopy (SFM). The results of the film balance study are indicative of a two-step mechanism in which initial adsorption of vesicles to the protein-containing monolayer is followed by rupture and integration of lipid material. Furthermore, we found that vesicle adsorption on a preformed monolayer supplemented with SP-B or SP-C is strongly enhanced by negatively charged lipids as provided by DPPG and the presence of Ca2+ ions in the subphase. Hence, long-range electrostatic interactions are thought to play an important role in attracting vesicles to the surface, being the initial step in replenishment of lipid material. While insertion into the monolayer is independent of the type of protein SP-B or SP-C, initial adsorption is faster in the presence of SP-B than SP-C. We propose that the preferential interaction between SP-B and negatively charged DPPG leads to accumulation of negative charges in particular regions, causing strong adhesion between DPPG-containing vesicles and the monolayer mediated by Ca2+ ions, which eventually causes flattening and rupture of attached liposomes as observed by in situ SFM.  相似文献   

14.
An efficient synthesis for human-identical lung surfactant protein SP-C is described with a semi-automated solid phase synthesizer using Fmoc chemistry. Double coupling and acetic anhydride capping procedures were employed for synthetic cycles within the highly hydrophobic C-terminal domain of SP-C. Isolation of the protein was performed by mild cleavage and deprotection conditions and subsequent HPLC purification yielding a highly homogeneous protein as established by sequence determination, electrospray, plasma desorption and MALDI mass spectrometry. A general method has been employed for the preparation of Cys-palmitoylated protein by using temporary Cys(tButhio) protection, in situ deprotection with β-mercaptoethanol and selective palmitoylation of resin-bound SP-C. The mild synthesis and isolation conditions provide SP-C with a high α-helical content, comparable to that of the natural SP-C, as assessed by CD spectra. Furthermore, first biophysical data indicate a surfactant activity comparable to that of the natural protein. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The influence of the hydrophobic proteins SP-B and SP-C, isolated from pulmonary surfactant, on the morphology of binary monomolecular lipid films containing phosphocholine and phosphoglycerol (DPPC and DPPG) at the air-water interface has been studied using epifluorescence and dark-field microscopy. In contrast to previously published studies, the monolayer experiments used the entire hydrophobic surfactant protein fraction (containing both the SP-B and SP-C peptides) at physiologically relevant concentrations (approximately 1 wt %). Even at such low levels, the SP-B/C peptides induce the formation of a new phase in the surface monolayer that is of lower intrinsic order than the liquid condensed (LC) phase that forms in the pure lipid mixture. This presumably leads to a higher structural flexibility of the surface monolayer at high lateral pressure. Variation of the subphase pH indicates that electrostatic interaction dominates the association of the SP-B/C peptides with the lipid monolayer. As evidenced from dark-field microscopy, monolayer material is excluded from the DPPC/DPPG surface film on compression and forms three-dimensional, surface-associated structures of micron dimensions. Such exclusion bodies formed only with SP-B/C peptides. This observation provides the first direct optical evidence for the squeeze-out of pulmonary surfactant material in situ at the air-water interface upon increasing monolayer surface pressures.  相似文献   

16.
Cholesterol is the major neutral lipid in lung surfactant, accounting for up to 8-10% of surfactant mass, while surfactant protein SP-C (∼ 4.2 kDa) accounts for no more than 1-1.5% of total surfactant weight but plays critical roles in formation and stabilization of pulmonary surfactant films. It has been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films and this interaction could have a potential role on modulating surfactant function. In the present study, we have analyzed the effect of cholesterol on the structure, orientation and dynamic properties of SP-C embedded in physiologically relevant model membranes. The presence of cholesterol does not induce substantial changes in the secondary structure of SP-C, as analyzed by Attenuated Reflection Fourier Transformed Infrared spectroscopy (ATR-FTIR). However, the presence of cholesterol modifies the orientation of the transmembrane helix and the dynamic properties of the protein, as demonstrated by hydrogen/deuterium exchange kinetics. The effect of cholesterol on SP-C reconstituted in zwitterionic, entirely fluid, membranes made of POPC (palmitoyloleoylphospatidylcholine) or in anionic membranes with coexistence of ordered and disordered phases, such as those made of dipalmitoylphosphatidylcholine (DPPC):POPC:Palmitoyloleoylphosphatidylglycerol (POPG) (50:25:15) is dual. Cholesterol decreases the exposure of the protein to the aqueous environment and the tilt of its transmembrane helical segment up to a ratio Cholesterol:SP-C of 4.8 and 2.4 (mol/mol) in the two lipid systems tested, respectively, and it increases the exposure and tilt at higher cholesterol proportions. The results presented here suggest the existence of an interaction between SP-C and cholesterol-enriched phases, with consequences on the behavior of the protein, which could be of relevance for cholesterol-dependent structure-function relationships in pulmonary surfactant membranes and films.  相似文献   

17.
In situ external reflection infrared spectroscopy at the air-water interface was used to study the influence on phospholipid structure of an endogenous mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, which are thought to play pivotal roles in the adsorption and function of pulmonary surfactant. Mixtures studied were 1:1, 2:1, and 7:1 (mol:mol) DPPC-d(62):DPPG, and 7:1 DPPC-d(62):DOPG, alone and in the presence of 0.5-10 wt % mixed SP-B/C purified chromatographically from calf lung surfactant extract. Perdeuteration of DPPC produced a shift in vibrational frequencies so that it could be differentiated spectroscopically from the phosphoglycerol component in the surface monolayer. CH(2) antisymmetric and symmetric stretching bands ( approximately 2920 and 2852 cm(-1)) along with the analogous CD(2) stretching bands ( approximately 2194 and 2089 cm(-1)) were analyzed, and band heights and peak wavenumber positions were assessed as a function of monolayer surface pressure. Small, near-physiological contents of 1-2 wt % SP-B/C typically produced the maximum observed spectroscopic effects, which were abolished at high protein contents of 10 wt %. Analysis of CH(2) and CD(2) stretching bands and C-H/C-D band height ratios indicated that SP-B/C affected PC and PG lipids differently within the surface monolayer. SP-B/C had preferential interactions with DPPG in 1:1, 2:1, and 7:1 DPPC-d(62):DPPG films that increased its acyl chain order. SP-B/C also interacted specifically with DOPG in 7:1 DPPC-d(62):DOPG monolayers, but in this case an increase in CH(2) band heights and peak wavenumber positions indicated a further disordering of the already fluid DOPG acyl chains. CD(2) band height and peak wavenumber analysis indicated that SP-B/C had no significant effect on the structure of DPPC-d(62) chains in 7:1 films with DPPG or DOPG, and had only a slight tendency to increase the acyl chain order in 1:1 films of DPPC-d(62):DPPG. SP-B/C had no significant effect on DPPC-d(62) structure in films with DOPG. Infrared results also indicated that interactions involving SP-B/C and lipids led to exclusion of PC and PG lipids from the compressed interfacial monolayer, in agreement with our previous report on the phase morphology of lipid monolayers containing 1 wt % SP-B/C.  相似文献   

18.
Pulmonary surfactant forms a surface film that consists of a monolayer and a monolayer-associated reservoir. The extent to which surfactant components including the main component, dipalmitoylphosphatidylcholine (DPPC), are adsorbed into the monolayer, and how surfactant protein SP-A affects their adsorptions, is not clear. Transport of cholesterol to the surface region from dispersions of bovine lipid extract surfactant [BLES(chol)] with or without SP-A at 37 degrees C was studied by measuring surface radioactivities of [4-(14)C]cholesterol-labeled BLES(chol), and the Wilhelmy plate technique was used to monitor adsorption of monolayers. Results showed that transport of cholesterol was lipid concentration dependent. SP-A accelerated lipid adsorption but suppressed the final level of cholesterol in the surface. Surfactant adsorbed from a dispersion with or without SP-A was transferred via a wet filter paper to a clean surface, where the surface radioactivity and surface tension were recorded simultaneously. It was observed that 1) surface radioactivity was constant over a range of dispersion concentrations; 2) cholesterol and DPPC were transferred simultaneously; and 3) SP-A limited transfer of cholesterol.These results indicate that non-DPPC components of pulmonary surfactant can be adsorbed into the monolayer. Studies in the transfer of [1-(14)C]DPPC-labeled BLES(chol) to an equal or larger clean surface area revealed that SP-A did not increase selective adsorption of DPPC into the monolayer. Evaluation of transferred surfactant with a surface balance indicated that it equilibrated as a monolayer. Furthermore, examination of transferred surfactants from dispersions with and without prespread BLES(chol) monolayers revealed a functional contiguous association between adsorbed monolayers and reservoirs.  相似文献   

19.
A low molecular weight hydrophobic protein was isolated from porcine lung lavage fluid using silicic acid and Sephadex LH-20 chromatography. The protein migrated with an apparent molecular weight of 5000-6000 on SDS-PAGE under reducing and nonreducing conditions. Gels run under reducing conditions also showed a minor band migrating with a molecular weight of 12,000. Amino acid compositional analysis and sequencing data suggest that this protein preparation contains intact surfactant protein SP-C and about 30% of truncated SP-C (N-terminal leucine absent). The surfactant protein was combined with perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) in multilamellar vesicles. The protein enhanced the rate of adsorption of the lipid at air-water interfaces. The ability of the protein to alter normal lipid organization was examined by using high-sensitivity differential scanning calorimetry (DSC) and 2H nuclear magnetic resonance spectroscopy (2H NMR). The calorimetric measurements indicated that the protein caused a decrease in the temperature maximum (Tm) and a broadening of the phase transition. At a protein concentration of 8% (w/w), the enthalpy change of transition was reduced to 4.4 kcal/mol compared to 6.3 kcal/mol determined for the pure lipid. NMR spectral moment studies indicated that protein had no effect on lipid chain order in the liquid-crystal phase but reduced orientational order in the gel phase. Two-phase coexistence in the presence of protein was observed over a small temperature range below the pure lipid transition temperature. Spin-lattice relaxation times (T1) were not substantially affected by the protein. Transverse relaxation time (T2e) studies suggest that the protein influences slow lipid motions.  相似文献   

20.
Mixed film studies of the systems cholesterol/tetradecanoic acid and cholesterol/dipalmitoylphosphatidylcholine have been carried out over the entire compositional range at 21°C. When compared on an acyl chain basis the condensing effects were found to be essentially independent of which host-lipid was utilized. The phase change of the host lipid was shifted to higher pressures, then broadened and eliminated. Maximal condensation occurred at just above 42 mol% for the cholesterol/DPPC system. In both systems the two components were initially found to be miscible at all proportions.The results are interpreted in terms of the molecular packing of cholesterol with acyl boundary layers, one significantly, one weakly affected. Maximum condensation is a result of packing that provides maximum cholesterol/acyl chain contact. Consideration is given to both long term stability of such mixed monolayers and the behaviour of the corresponding bilayer states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号