首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromosomes and DNA sequence homologies have been studied in 15 species of North American salamander belonging to the genus Plethodon. These include 4 Eastern small species, 5 Eastern large species, 5 Western, and 1 New Mexican species. All species have 14 metacentric or sub-metacentric chromosomes. Their karyotypes are closely similar, but their C values range from 18–69 pg. DNA:DNA molecular hybridization studies showed that salamanders belonging to the same species group had between 60 and 90% of the observed repetitive DNA sequences in common, different groups of Eastern species had between 40 and 60% in common, and Eastern and Western groups had less than 10% in common. The slowly reassociating DNA sequences were also diverse among species, but higher levels of homology were observed than in the case of repetitive sequences. The New Mexican species was exceptional in showing little homology with other species with respect to either repetitive or slowly reassociating sequences.  相似文献   

2.
A highly repeated satellite DNA (Hy500) located in the centromeric heterochromatin of the European plethodontid salamander Speleomantes (formerly Hydromantes) was studied. The Hy500 family represents about 1% of the Speleomantes supramontis genome and has a major repeating unit of about 500 base pairs, which may have evolved from the progressive amplification of shorter sequences. This centromeric satellite is conserved in all the Speleomantes species, which nevertheless show distinct patterns of chromosomal distribution, which are of relevance as to their phylogenetic relationships.  相似文献   

3.
DeBaryshe PG  Pardue ML 《Genetics》2011,187(1):51-60
Repeated DNA in heterochromatin presents enormous difficulties for whole-genome sequencing; hence, sequence organization in a significant portion of the genomes of multicellular organisms is relatively unknown. Two sequenced BACs now allow us to compare telomeric retrotransposon arrays from Drosophila melanogaster telomeres with an array of telomeric retrotransposons that transposed into the centromeric region of the Y chromosome >13 MYA, providing a unique opportunity to compare the structural evolution of this retrotransposon in two contexts. We find that these retrotransposon arrays, both heterochromatic, are maintained quite differently, resulting in sequence organizations that apparently reflect different roles in the two chromosomal environments. The telomere array has grown only by transposition of new elements to the chromosome end; the centromeric array instead has grown by repeated amplifications of segments of the original telomere array. Many elements in the telomere have been variably 5'-truncated apparently by gradual erosion and irregular deletions of the chromosome end; however, a significant fraction (4 and possibly 5 or 6 of 15 elements examined) remain complete and capable of further retrotransposition. In contrast, each element in the centromere region has lost ≥ 40% of its sequence by internal, rather than terminal, deletions, and no element retains a significant part of the original coding region. Thus the centromeric array has been restructured to resemble the highly repetitive satellite sequences typical of centromeres in multicellular organisms, whereas, over a similar or longer time period, the telomere array has maintained its ability to provide retrotransposons competent to extend telomere ends.  相似文献   

4.
Male meiosis, with special regard to the centromeric heterochromatin and to centromeric structure, has been studied in the salamander, Plethodon cinereus cinereus. In this salamander, n = 14. Early meiotic prophase proceeds as described by other authors. Pachytene is followed by a diffuse stage in which much of the chromosomal DNA becomes reorganized into fine lateral loops which spring from the bivalent axes. These loops can be seen along the bivalent axes as early as zygotene. Loops are maximally extended in the diffuse stage. The formation of diplotene bivalents involves a return of this extended DNA into the axes of the bivalents. — At leptotone, centromeric heterochromatin is in one or a few large masses. These masses break up during zygotene. At pachytene there is one mass of heterochromatin at the centromeric region of each bivalent. The heterochromatin remains condensed in the diffuse stage. During diplotene, centromeric heterochromatin becomes less conspicuous, and it is possible to see 4 centromere granules in each diplotene bivalent. These observations support the view that centromeres replicate at pre-meiotic S-phase when the associated hetero-chromatin is replicated. In the interphase before the 2nd division, the hetero-chromatin often forms a broken ring corresponding to the positions of the centromeres at the end of anaphase 1. There are 14 masses of heterochromatin in nuclei at prophase of the 2nd division. In spermatids, the heterochromatin appears as a single solid mass or a broken ring.  相似文献   

5.
We isolated a new family of satellite DNA sequences from Hae III- and Eco RI-digested genomic DNA of the Blakistons fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.An erratum to this article can be found at Communicated by Y. Hiraoka  相似文献   

6.
7.
The genus Artemia (Crustacea, Phyllopoda) is widely distributed all over the world as a result partly of natural colonization and partly of spread by birds and man. Artemia offers a very interesting model for speciation studies, since the genus comprises both bisexual sibling species and parthenogenetic populations, exhibiting different chromosome numbers (diploidy, heteroploidy and polyploidy). The finding of the clustered repetitive AluI DNA family in the heterochromatin of A. franciscana can provide a useful tool for investigating the relationship between the members of the genus Artemia at the molecular level. Sixteen strains of Artemia, comprising sibling species and parthenogenetic populations, were analysed for the presence of AluI repetitive DNA by dot-blot hybridization. The observed variation in the content of repetitive DNA together with genetical, biological and geological data, support the hypothesis that Artemia living in the New World are derived from ancestral species that evolved in the Mediterranean area.  相似文献   

8.
9.
The functional and evolutionary significance of highly repetitive, simple sequence (satellite) DNA is analysed by examining available information on the patterns of variation of heterochromatin and cloned satellites among newts (family Salamandridae), and particularly species of the European genus Triturus. This information is used to develop a model linking evolutionary changes in satellite DNAs and chromosome structure. In this model, satellites accumulate initially in large tandem blocks around centromeres of some or all of the chromosomes, mainly by repeated chromosomal exchanges in these regions. Centromeric blocks later become broken up and dispersed by small, random chromosome rearrangements in these regions. They are dispersed first to pericentric locations and then gradually more distally into the chromosome arms and telomeres. Dispersal of a particular satellite is accompanied by changes in sequence structure (for example, base substitutions, deletions, etc.) and a corresponding decrease in its detectability at either the molecular or cytological level. On the basis of this model, observed satellites in newt species may be classified as 'old', 'young', or of 'intermediate' phylogenetic age. The functions and effects of satellite DNA and heterochromatin at the cellular and organismal levels are also discussed. It is suggested that satellite DNA may have an impact on cell proliferation through the effect of late-replicating satellite-rich heterochromatin on the duration of S-phase of the cell cycle. It is argued that even small alterations in cell cycle time due to changes in heterochromatin amount may have magnified effects on organismal growth that may be of adaptive significance.  相似文献   

10.
A DNA transformed mouse cell line, generated by the microinjection of a pBR322 plasmid containing the herpes thymidine kinase (tk) gene, was observed to exhibit a high frequency of DNA rearrangement at the site of exogenous DNA integration. The instability in this cell line does not appear to be mediated by the tk inserts or the immediately adjacent mouse DNA, but instead may be a consequence of the larger host environment at the chromosomal site of tk insertion. Results obtained from restriction analysis, in situ chromosome hybridizations, and cesium chloride density-gradient fractionations indicate that the tk inserts are organized as a single cluster of direct and inverted repeats embedded within pericentromeric satellite DNA. To determine the molecular identity of the flanking host sequences, one of the mouse-tk junction fragments was cloned, and subsequent restriction and sequence analyses revealed that this DNA fragment consists almost entirely of classical mouse satellite DNA. On the basis of these observations, we suggest that the instability in this cell line may reflect the endogenous instability or fluidity of satellite DNA.  相似文献   

11.
Curvature of mouse satellite DNA and condensation of heterochromatin   总被引:20,自引:0,他引:20  
M Z Radic  K Lundgren  B A Hamkalo 《Cell》1987,50(7):1101-1108
Cloned, sequenced mouse satellite DNA exhibits properties characteristic of molecules that possess a stable curvature. Circularly permuted fragments containing the region predicted to bend were used to map the curvature relative to DNA sequence. The altered mobility of these fragments in polyacrylamide gels is reversed when gels are run in the presence of distamycin A, a drug that binds preferentially to AT-rich DNA. Treatment of living mouse cells with this drug dramatically reduces the condensation of centromeric heterochromatin, the exclusive location of satellite sequences. In situ hybridization of satellite probes to extended chromosomes at the electron microscope level shows that satellite does not comprise a single block but is distributed throughout the centromere region. Based on these experiments, we hypothesize that the structure of mouse satellite DNA is an important feature of centromeric heterochromatin condensation.  相似文献   

12.
13.
Chromosomes,DNA sequences,and evolution in salamanders of the genus Aneides   总被引:1,自引:1,他引:0  
Chromosomes and DNA sequence homologies have been studied in salamanders of the genus Aneides. The species studied included A. ferreus, flavipunctatus, lugubris, hardii and aeneus. All species have 14 chromosomes. The karyotypes of A. ferreus and A. hardii are very similar. All chromosomes are metacentric or sub-metacentric except chromosome 13 which is telocentric in A. hardii, but is represented by a telocentric and a sub-telocentric chromosome in A. ferreus. C values range from 35.2 to 46.0 pg. Salamanders from different species groups have nothing in common with respect to that fraction of their repeated DNA sequences that hybridizes in experiments involving the binding of labelled whole complementary RNA from one species to whole DNA from another species. Salamanders from the same species group (ferreus, lugubris and flavipunctatus) have about 25% in common with respect to their repetitive DNA sequences.  相似文献   

14.
15.
Saito Y  Edpalina RR  Abe S 《Genetica》2007,131(2):157-166
Satellite DNA clones with a 37 bp repeat unit were obtained from BglII-digested genomic DNA of Masu salmon (Oncorhynchus masou) and Chum salmon (O. keta). Fluorescence in situ hybridization (FISH) analysis with the isolated clones as a probe showed that these repetitive sequences were localized in the telomeric regions of chromosomes in both species. Southern and dot blot analyses suggested conservation of homologous sequences with similar repeat unit in other salmonids including the species of the genus Oncorhynchus and Salvelinus, but lack or scarcity of such sequences in the genus Hucho and Salmo. Similarly, polymerase chain reaction (PCR)-based cloning of satellite DNA referring to a reported Rainbow trout (O. mykiss) centromeric sequence was successful for the Oncorhynchus, Salvelinus and Hucho species. The obtained satellite DNA clones were localized with FISH in the centromeric regions of chromosomes of the species from these three genera. Although PCR cloning of the centromeric satellite DNA had failed in the Salmo species due to some base changes in the priming sites, dot blot hybridization analysis suggested conservation of homologous satellite DNA in the genus Salmo as in the other three genera. In the neighbor-joining tree of cloned centromeric satellite DNA sequences, the genus Oncorhynchus and Salvelinus formed adjacent clades, and the clade of the genus Hucho included the reported centromeric sequence of the genus Salmo. Conservation pattern and molecular phylogeny of the telomeric and centromeric satellite DNA sequences isolated herein support a close phylogenetic relationship between the genus Oncorhynchus and Salvelinus and between the Salmo and Hucho.  相似文献   

16.
17.
Accurate chromosome segregation in mitosis requires cohesion between sister centromeres mediated by heterochromatin. Although establishment of both silent heterochromatin and cohesion require passage through S phase, the mechanism was previously unknown. In our recent paper, we demonstrate that heterochromatin silencing and cohesion at the centromere rely on temporal activation of the conserved S phase protein kinase Hsk1-Dfp1. Hsk1-Dfp1 is needed for heterochromatin assembly downstream of Swi6 binding to chromatin; importantly, this activity is independent of the replication function of Hsk1-Dfp1. This defines a temporal connection between S phase, heterochromatin and cohesion that is independent of replication fork passage.  相似文献   

18.
19.
Native highly repetitive DNA sequences have been allowed to react in situ with DNA-depleted polytene chromosomes of chironomids in cytological preparations. The double-stranded DNA can bind specifically to the centromeric heterochromatin, where these sequences have been localized previously by in situ hybridization. Various control experiments support the conception that heterochromatin-specific DNA-binding proteins are involved in the in situ binding. Dedicated to Prof. Dr. Wolfgang Beermann for his 60th birthday  相似文献   

20.
Mouse centromeric heterochromatin: Isolation and some characteristics   总被引:2,自引:0,他引:2  
A method is suggested for isolation of highly purified mouse centromeric heterochromatin. Treatment of mouse liver nuclei with decreasing concentrations of Ca2+ resulted in the gradual unraveling of chromatin in the nucleus and at 0.1 mM Ca2+ electron microscopy revealed several dense particles per nucleus, surrounded by decondensed chromatin. These particles, assumed to represent centromere regions of interphase chromosomes by in situ hybridization with radioactive mouse satellite DNA and by differential staining for centromere heterochromatin, were isolated in preparative amounts and their DNA and protein composition was analyzed. The preparation represented practically pure mouse centromere heterochromatin, since more than 90% of its DNA was satellite DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号