首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of prostaglandins (PGs) in apoptosis in preimplantation mice embryo development is reported in this study. It is known that apoptosis plays a very important role in normal mice embryo development. Very few reports are available on this subject. Embryos (6-8 cells) were cultured in the presence of a selective cyclooxygenase (COX)1 inhibitor (SC560), a selective COX2 inhibitor (NS398) and a selective prostacyclin synthase (PGIS) inhibitor (U51605) in a 48-h culture. In another experiment, culture media were supplemented with prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2 or prostacyclin) analogues. The apoptosis was evaluated by detection of active caspase-3. It was strongly detected in the presence of selective COX-2 and PGIS inhibitors, which can be decreased by a PGI2 analogue. In our embryo transfer experiment, the implantation rate decreased with exposure to either the COX2 or the PGIS inhibitor which is increased further after PGI2 supplementation. The level of PGI2 is also higher at the 8-16-cell stage, compaction and blastocyst stage than PGE2. All these results indicate that COX2-derived PGI2 plays an important role in preimplantation embryo development and acts as an antiapopetic factor in in vitro culture.  相似文献   

2.
3.
The major determinants of uterine receptivity are the ovarian progesterone and estrogen hormones, respectively. Different prostaglandins (PGs) have been elucidated in reproduction and also in this process of implantation in various ways. The blastocyst undergoes implantation on the uterine epithelium in defined hormone prepared period known as "implantation window". However, any definitive role of PGs in the window of receptivity remains elusive. It is demonstrated herein that selective COX1 inhibitor (SC560) and selective COX2 inhibitor (nimesulide) separately had no significant effect on blastocyst implantation while combination of both inhibitors in lower dose showed partial delay in implantation by more than 24h and became implanted beyond the window of implantation, i.e. on D6 but these implantation sites were significantly reduced on D10 and the pregnancy is lost in significant number. However, the higher doses of inhibitors in combination completely prevented implantation. Embryos retrieved from these treated mice showed significantly lower number of embryonic cells (77+/-3.3 and 65.2+/-3.9) than the optimum number of embryonic cells (93.4+/-2.6). The lower doses of both the inhibitors reduced uterine PGE2 and PGI2 content on D5 but did not inhibit as efficiently as higher doses. In addition, our immunohistochemistry result shows that there was no COX1 and COX2 localization on D5 of treated mice but COX2 begins expressing on D6 like normal D5 of pregnancy. Therefore, we can conclude that embryos implanted after the delay showed defective post-implantation development because of lower number of embryonic cells of implanting blastocyst and implantation beyond the proper time in window of receptivity.  相似文献   

4.
目的:通过建立慢病毒载体感染猪胚胎体系实现胚胎标记,进而研究不同发育阶段猪孤雌胚胎之间的嵌合能力,为进一步研究猪早期胚胎发育以及细胞分化奠定基础.方法:首先,通过显微注射的方法把2×109I.U./ml、2×108I.U./ml和2×107I.U./ml三个梯度的表达绿色荧光的慢病毒载体分别注射到猪1-细胞胚胎和2-细胞胚胎的透明带下,进行胚胎的GFP转基因标记,在荧光显微镜下观察比较卵裂率、阳性胚胎率、囊胚率、阳性囊胚率和囊胚细胞数.然后,采用凹窝聚合法对同步发育胚胎在不同阶段(2-细胞,4-细胞,8-细胞)进行嵌合,2-细胞胚胎与不同发育阶段(2-细胞、4-细胞、8-细胞)胚胎进行嵌合以及2-细胞胚胎卵裂球互换制作嵌合体胚胎,发育到囊胚时在荧光显微镜下检测胚胎的嵌合状态.结果:2×109I.U./ml的慢病毒感染猪2-细胞胚胎组中,体外受精和孤雌胚胎感染阳性率( 80.00%、76.36%)和阳性囊胚率(90.74%、89.56%)都显著高于其它滴度组(P<0.05),另外,慢病毒感染的两种胚胎与对照组对卵裂率、囊胚率和囊胚细胞数三个指标没有显著影响(P>0.05).2-细胞胚胎之间嵌合囊胚率和2-细胞卵裂球互换嵌合囊胚率( 53.85%、62.50%)显著高于2-细胞胚胎与4-细胞胚胎的嵌合率(18.60%,P<0.05),在同步发育胚胎中8-细胞胚胎之间的嵌合率(75.00%)高于4-细胞胚胎之间和2-细胞胚胎之间的嵌合率( 65.00%、53.80%).结论:2×109I.U./ml的慢病毒感染2-细胞期胚胎效率最高,另外,慢病毒感染对猪胚胎发育没有明显影响.8-细胞间的嵌合率比较高;发育同步胚胎间的嵌合率高于发育非同步胚胎间的嵌合率.  相似文献   

5.
Oocyte cytoplasm plays a prominent role in cloned embryonic development. To investigate the influence of oocyte cytoplasmic amount on cloned embryo development, we generated bovine somatic cell nuclear transfer (SCNT) embryos containing high (30-40% of the cytoplasm was removed), medium (15-25% of the cytoplasm was removed) and low (<10% of the cytoplasm was removed) nucleocytoplasmic volume ratios (N/C) using enucleated metaphase II oocyte as recipient, and fibroblast as donor nucleus, and analyzed the expression levels of ND1, Cytb and ATPase6, as well as the embryonic quality. The results indicated: (1) the process of embryonic development was not influenced by <40% of cytoplasm removal; (2) the rate of blastocyst formation, the total number of blastomere and the ratio of ICM to TE were inversely proportional to the N/C; (3) SCNT embryos with reduced volume equal to 75-85% or >90% of an intact oocyte volume showed similar karyotype structure of the donor cells; (4) the number of mtDNA copy was larger in low N/C embryos than that in medium or high N/C embryos, and the expression levels of each gene hardly varied from the 2-cell to 8-cell stage, while the expression levels increased dramatically at the blastocyst stage; (5) from 16-cell to the blastocyst stage, the change of the expression level of each gene was not significant between low N/C embryos and IVF embryos, but it was more significant than those of high or medium N/C embryos. The results suggest that the decrease of mtDNA copy number and mitochondrial gene expression may be related to the impairment in early embryonic development, and removal of <10% adjacent cytoplasm volume may be optimal for bovine SCNT embryo development.  相似文献   

6.
7.
8.
In this study, cytoplasmic effects on the development of nuclear transplant embryos were examined. In addition, the production of offspring from nuclear transplant embryos was attempted. Nuclei from cleavage-stage embryos were transplanted to enucleated zygotes at different cell cycle stages and with different cytoplasmic volumes. A greater developmental rate to the blastocyst stage was observed in reconstituted late stage zygotes that received nuclei from late 2-cell stage embryos than in early stage zygotes (46.3% vs. 16.9%). A further increase in developmental rate to the blastocyst stage (85.5%) and in cell number was obtained in reconstituted late stage zygotes with reduced cytoplasmic volume. However, developmental potential of nuclei from 4- and 8-cell stage embryos was very limited, although they were transferred to enucleated late stage zygotes with reduced cytoplasm. After the transfer of blastocysts derived from nuclear transplant embryos to recipient females, live young were obtained from reconstituted embryos that received nuclei from late 2-cell stage embryos (28.6%). These results confirm that the development of nuclear transplant embryos can be affected by recipient cell cycle stage and cytoplasmic volume. Furthermore, the nuclei from late 2-cell stage embryos in which activation of the embryonic genome had occurred can be reprogrammed to a certain extent when transplanted into enucleated zygotes, especially late stage zygotes with reduced cytoplasmic content.  相似文献   

9.
Prostaglandin E2 (PGE2) is shown to be essential for female reproduction. Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis from arachidonic acid and exists in two isoforms: COX-1 and COX-2. Prostaglandin E synthase (PGES) is a terminal prostanoid synthase and can catalyse the isomerization of the COX product PGH2 to PGE2, including microsomal PGES-1 (mPGES-1), cytosolic PGES (cPGES) and mPGES-2. This study examined the protein expression of COX-1, COX-2, mPGES-1, cPGES and mPGES-2 in preimplantation mouse embryos by immunohistochemistry. Embryos at different stages collected from oviducts or uteri were transferred into a flushed oviduct of non-pregnant mice. The oviducts containing embryos were paraffin-embedded and processed for immunostaining. COX-1 immunostaining was at a basal level in zygotes and a low level at the 2-cell stage, reaching a high level from the 4-cell to blastocyst stage. COX-2 immunostaining was at a low level at the zygote stage and was maintained at a high level from the 2-cell to blastocyst stages. A low level of mPGES-1 immunostaining was observed from the zygote to 8-cell stages. The signal for mPGES-1 immunostaining became stronger at the morula stage and was strongly seen at the blastocyst stage. cPGES immunostaining was strongly observed in zygotes, 2-cell and 8-cell embryos. There was a slight decrease in cPGES immunostaining at the 4-cell, morula and blastocyst stages. mPGES-2 immunostaining was at a low level from the zygote to morula stages and at a high level at the blastocyst stage. We found that the COX-1, COX-2, mPGES-1, cPGES and mPGES-2 protein signals were all at a high level at the blastocyst stage. PGE2 produced during the preimplantation development may play roles during embryo transport and implantation.  相似文献   

10.
To mimic the native conditions, the cyclooxygenase (COX)/prostaglandin I(2) synthase (PGIS) coupling reaction system was used to determine the coordination of PGIS with COX for the biosynthesis of prostacyclin (PGI(2)) using arachidonic acid (AA) as a substrate in a membrane-bound environment. The membrane-bound PGIS exhibited a faster isomerization of PGH(2) produced by COX to PGI(2) than the detergent-solubilized PGIS. To determine whether the N-terminal domain of PGIS responds to the facilitation of PGH(2) movement (presentation) from COX to the active site of PGIS, the first 20 residues of PGIS (Delta20-PGIS) were deleted and expressed in COS-7 cells. Delta20-PGIS retained membrane-bound properties and exhibited a slower substrate presentation property. Furthermore, a chimeric molecule (PGIS/TXAS(8-27)) with the replacement of the first 20 residues of PGIS by the corresponding membrane anchor region (residues 8-27) of thromboxane A(2) synthase was created to evaluate the mechanism influencing the biosynthesis of PGI(2) in coordination with COX. The chimera revealed a multiple fold delay in the PGH(2) presentation in low range concentrations of AA (0.3-3muM) at 30s reactions. However, the delay could be recovered by a longer incubation time in high range concentrations of AA (>10muM), but not in low range concentrations of AA. These results demonstrated that the N-terminal domain of PGIS plays a role in the facilitation of the substrate presentation to the PGIS active site in low concentrations of AA, which may be a physiological condition. The TXAS N-terminal domain could not replace the function of the corresponding domain of PGIS, indicating that the facilitation of the substrate presentation is specific.  相似文献   

11.
This study examined the chromatin morphology, in vitro development, and expression of selected genes in cloned embryos produced by transfer of mouse embryonic fibroblasts (MEF) into the bovine ooplasm. After 6 hr of activation, inter-species nuclear transfer (NT) embryos (MEF-NT) had one (70%) or two pronuclei (20%), respectively. After 72 hr of culture in vitro, 62.6% of the MEF-NTs were arrested at the 8-cell stage, 31.2% reached the 2- to 4-cell stage, and only 6.2% had more than eight blastomeres, but none of these developed to the blastocyst stage. Whereas, 20% of NT embryos derived from bovine embryonic fibroblast fused with bovine ooplasm (BEF-NT) reached the blastocyst stage. Donor MEF nuclei expressing an Enhanced Green Fluorescent Protein (EGFP) transgene resulted in 1- to 8-cell stage MEF-NT that expressed EGFP. The expression of selected genes was examined in 8-cell MEF-NTs, 8-cell mouse embryos, enucleated bovine oocytes, and MEFs using RT-PCR. The mRNA for heat shock protein 70.1 (Hsp 70.1) gene was detected in MEF-NTs and MEF, but not in mouse embryos. The hydroxy-phosphoribosyl transferase (HPRT) mRNA was found in normal mouse embryos and MEF but not in MEF-NTs. Expression of Oct-4 and embryonic alkaline phospatase (eAP) genes was only detected in normal mouse embryos and not in the inter-species NT embryos. Abnormal gene expression profiles were associated with an arrest in the development at the 8-cell stage, but MEF-NT embryos appeared to have progressed through gross chromatin remodeling, typical of intra-species NT embryos. Therefore, molecular reprogramming rather than chromatin remodeling may be a better indicator of nuclear reprogramming in inter-species NT embryos.  相似文献   

12.
Somatic cell nuclear transfer has successfully been used to clone several mammalian species including the mouse, albeit with extremely low efficiency. This study investigated gene expression in cloned mouse embryos derived from cumulus cell donor nuclei, in comparison with in vivo fertilized mouse embryos, at progressive developmental stages. Enucleation was carried out by the conventional puncture method rather than by the piezo-actuated technique, whereas nuclear transfer was achieved by direct cumulus nuclear injection. Embryonic development was monitored from chemically induced activation on day 0 until the blastocyst stage on day 4. Poor developmental competence of cloned embryos was observed, which was confirmed by lower cell counts in cloned blastocysts, compared with the in vivo fertilized controls. Subsequently, real-time polymerase chain reaction was used to analyze and compare embryonic gene expression at the 2-cell, 4-cell, and blastocyst stages, between the experimental and control groups. The results showed reduced expression of the candidate genes in cloned 2-cell stage embryos, as manifested by poor developmental competence, compared with expression in the in vivo fertilized controls. Cloned 4-cell embryos and blastocysts, which had overcome the developmental block at the 2-cell stage, also showed up-regulated and down-regulated expression of several genes, strongly suggesting incomplete nuclear reprogramming. We have therefore demonstrated that aberrant embryonic gene expression is associated with low developmental competence of cloned mouse embryos. To improve the efficiency of somatic cell nuclear transfer, strategies to rectify aberrant gene expression in cloned embryos should be investigated.This project was funded mainly by the National University of Singapore (grant number: R-174-000-065-112/303).  相似文献   

13.
Embryos derived from calf oocytes were compared with adult cow oocyte-derived embryos (1) by studying the kinetics of embryo development using time-lapse cinematography (2) by evaluating the ratio between inner cell mass (ICM) and trophectoderm (TE) cells in blastocysts (3) by measuring the triglyceride content of the blastocysts. The rate of calf oocyte-derived embryos reaching the blastocyst stage was reduced (26 vs. 46% for adult derived embryos). Calf oocyte-derived embryos preferably arrested their development before the 9-cell stage. Those that developed into blastocysts had cleaved earlier to reach the 2-cell or 3-cell stages than embryos that arrested before the 9-cell stage. The 9-cell stage tended to appear later in calf oocyte-derived embryo that reached the blastocyst stage than in adult-derived embryos. This difference became significant at the morula stage. Accordingly, the fourth cell cycle duration was longer for calf oocyte-derived embryos. Day 8 blastocysts from both sources had similar total cell numbers (calf: 89 +/- 20; cow: 100 +/- 30) and cell distribution between TE and ICM. The triglyceride content of day 7 blastocysts was similar for both sources (64 +/- 15 vs. 65 +/- 6 ng/embryo, respectively). In conclusion, calf oocyte-derived embryos are characterized by a higher rate of developmental arrest before the 9-cell stage and by a longer lag phase preceding the major onset of embryonic genome expression. These changes might be related to insufficient "capacitation" of the calf oocyte during follicular growth. Despite these differences, modifications in the quality of the resulting blastocysts were not detected.  相似文献   

14.
15.
The Arp2/3 complex, which nucleates actin filaments, comprises a stable assembly of seven-protein subunits including two actin-related proteins (Arp2 and Arp3). Previous work showed that Arp2/3 binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. In the present study, we show that the Arp2/3 complex is critical for cytokinesis during early embryonic development in porcine parthenotes. The Arp2/3 complex is concentrated at the cortex of each cell at the 1-, 2-, and 4-cell stages, and at the periphery at the morula stage. The amount of Arp2/3 significantly decreased at the blastocyst stage in parthenogenetically activated porcine embryos. Inhibition of the Arp2/3 complex in the pig embryos by the Arp2/3-specific inhibitor CK666 resulted in abnormal cell division, a decrease in developmental rate and total cell numbers, and an increase in the ratio of trophectoderm cell number to inner cell mass number in blastocyst-stage embryos. In addition, 4-cell stage embryos subjected to CK666 treatment exhibited significantly decreased expression of ZGA genes (Pou5f1, Sox2, and Nanog), suggesting that the Arp2/3 complex plays an important role in early porcine embryo development. Thus, our data demonstrate that the Arp2/3 complex is required for early embryonic development in pigs and appears to regulate the expression of pluripotency genes.  相似文献   

16.
In the unperturbed development of the mouse embryo one of the 2-cell blastomeres tends to contribute its progeny predominantly to the embryonic and the other to the abembryonic part of the blastocyst. However, a significant minority of embryos (20-30%) do not show this correlation. In this study, we have used non-invasive lineage tracing to determine whether development of blastocyst pattern shows any correlation with the orientation and order of the second cleavage divisions that result in specific positioning of blastomeres at the 4-cell stage. Although the orientation and order of the second cleavages are not predetermined, in the great majority (80%) of embryos the spatial arrangement of 4-cell blastomeres is consistent with one of the second cleavages occurring meridionally and the other equatorially or obliquely with respect to the polar body. In such cleaving embryos, one of the 2-cell stage blastomeres tends to contribute to embryonic while the other contributes predominantly to abembryonic part of the blastocyst. Thus, in these embryos the outcome of the first cleavage tends to correlate with the orientation of the blastocyst embryonic-abembryonic axis. However, the order of blastomere divisions predicts a specific polarity for this axis only when the earlier 2-cell blastomere to divide does so meridionally. In contrast to the above two groups, in those embryos in which both second cleavage divisions occur in a similar orientation, either meridionally or equatorially, we do not observe any tendency for the 2-cell blastomeres to contribute to specific blastocyst parts. We find that all these groups of embryos develop to term with similar success, with the exception of those in which both second cleavage divisions occur equatorially whose development can be compromised. We conclude that the orientations and order of the second cleavages are not predetermined; they correlate with the development of blastocyst patterning; and that the majority, but not all, of these cleavage patterns allow equally successful development.  相似文献   

17.
The objective of this study was to compare developmental capacity of rabbit chimeric embryos and the allocation of the EGFP gene expression to the embryoblast (ICM) or embryonic shield. We produced chimeric embryos (TR< >N) by synchronous transfer of two or three blastomeres at the 16-cell stage from transgenic (TR) into normal host embryos (N) at the same stage. In the control group, two to three non-transgenic blastomeres were used to produce chimeric embryos. The TR embryos were produced by microinjection of EGFP into both pronuclei of fertilized rabbit eggs. The developmental rate and allocation of EGFP-positive cells of the reconstructed chimeric embryos was controlled at blastocyst (96 h PC) and embryonic shield (day 6) stage. All chimeric embryos (120/120, 100%) developed up to blastocyst stage. Using fluorescent microscope, we detected green signal (EGFP expression). In 90 chimeric (TR< >N) embryos (75%). Average total number of cells in chimeric embryos at blastocyst stage was 175+/-13.10, of which 58+/-2.76 cells were found in the ICM area. The number of EGFP-positive cells in the ICM area was 24+/-5.02 (35%). After the transfer of 50 chimeric rabbit embryos at the 16-cell stage, 20 embryos (40%) were flushed from five recipients on day 6 of pregnancy, of which five embryos (25%) were EGFP positive at the embryonic shield stage. Our results demonstrate that transgenic blastomeres in synchronous chimeric embryos reconstructed from TR embryos have an ability to develop and colonize ICM and embryonic shield area.  相似文献   

18.
19.
The objective of the study was to investigate interspecies somatic cell nuclear transfer (iSCNT) embryonic potential and mitochondrial DNA (mtDNA) segregation during preimplantation development. We generated bovine-ovine reconstructed embryos via iSCNT using bovine oocytes as recipient cytoplasm and ovine fetal fibroblast as donor cells. Chromosome composition, the total cell number of blastocyst and embryonic morphology were analyzed. In addition, mtDNA copy numbers both from donor cell and recipient cytoplasm were assessed by real-time PCR in individual blastocysts and blastomeres from 1- to 16-cell stage embryos. The results indicated the following: (1) cell nuclei of ovine fetal fibroblasts can dedifferentiate in enucleated bovine ooplasm, and the reconstructed embryos can develop to blastocysts. (2) 66% of iSCNT embryos had the same number of chromosome as that of donor cell, and the total cell number of iSCNT blastocysts was comparable to that of sheep parthenogenetic blastocysts. (3) RT-PCR analysis in individual blastomeres revealed that the ratio of donor cell mtDNA: recipient cytoplasm mtDNA remained constant (1%) from the one- to eight-cell stage. However, the ratio decreased from 0.6% at the 16-cell stage to 0.1% at the blastocyst stage. (4) Both donor cell- and recipient cytoplasm-derived mitochondria distributed unequally in blastomeres with progression of cell mitotic division. Considerable unequal mitochondrial segregation occurred between blastomeres from the same iSCNT embryos.  相似文献   

20.
Frozen-thawed spermatozoa collected from a beef bull (Japanese Black) were used for in vitro fertilization (IVF) of matured oocytes obtained from dairy (Holstein) and beef (Japanese Black) females. Embryos were examined for fertilization, cleavage rate, interval between insemination and blastocyst production (experiment I), total cell number per embryo and sex ratio during blastocyst formation (experiment II), and blastocyst production rate of zygotes that developed to 2-, 4-, and 8-cell stages at 48h post-fertilization (experiment III). Fertilized oocytes were cultured in vitro on a cumulus cell co-culture system. The fertilization and cleavage rate of oocytes groups were similar, however, the blastocyst production rate was greater (P<0.05) in hybrid than from purebred embryos (27% versus 20%). Development of blastocysts produced from hybrid embryos developed at a faster rate than blastocysts produced from the straightbred embryos. In hybrid embryos, blastocyst production was significantly greater on day 7 (56%) and gradually decreased from 20% on day 8 to 17% on day 9. In contrast, blastocyst production rate from the purebred embryos was lower on day 7 (17%), increasing on day 8 to 59% and then decreased on day 9 to 24%. The total number of cells per embryo and sex ratio of in vitro-produced blastocysts were not different between hybrid and purebred embryos. The number of blastocysts obtained from embryos at the 8-cell stage of development by 48h post-fertilization (94%) was greater (P<0.01) than the number of zygotes producing blastocysts that had developed to the 4-cell stage (4%) and the 2-cell stage (2%) during the same interval. These results show that the blastocyst production rate and developmental rate to the blastocyst stage were different between hybrid and purebred embryos, and that almost all of the in vitro-produced blastocysts were obtained from zygotes that had developed to the 8-cell stage 48h post-fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号