首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If the conformational transition involved in enzyme memory occurs in several elementary steps, the time constant of the overall 'slow' relaxation is mostly determined by the individual values of the rate constants pertaining to the overall transconformation. The extent of kinetic co-operativity of the enzyme reaction, however, is mostly controlled by the degree of reversibility of the elementary steps of the conformational transition. There is then no simple relation between the time scale of the 'slow' transition and the extent of kinetic co-operativity of the enzyme reaction. A slow transition of about 10(-3) s-1 is therefore perfectly compatible with a strong positive or negative co-operativity and in particular with the negative co-operativity observed with wheat germ hexokinase LI. The relationship that has been established recently [Pettersson, G. (1986) Eur. J. Biochem. 154, 167-170] between the 'slow' enzyme relaxation and the extent of kinetic co-operativity holds only in the specific case where the transconformation occurs in one step. Owing to the possible occurrence of a multistep conformation change, the lack of this relationship means nothing as to the validity, or the invalidity, of the concept of mnemonical transition. More informative than the time scale of the 'slow' transition is its dependence with respect to glucose and glucose 6-phosphate, which both react with the enzyme. The effect of reaction products on the modulation of kinetic co-operativity is also of cardinal importance in the diagnosis of enzyme memory. Since an alternative model has been recently proposed by Pettersson (cited above) to explain the mechanistic origin of kinetic co-operativity of monomeric enzymes, the effect of products on the kinetic co-operativity predicted by this alternative model has been studied theoretically, in order to determine whether it is consistent with the experimental results obtained with wheat germ hexokinase LI. This analysis shows that the predictions of this model are in total disagreement with both the predictions of the mnemonical model and the experimental results obtained with wheat germ hexokinase LI, as well as with other enzymes. This alternative model cannot therefore be considered as a sensible explanation of the mechanistic origin of co-operativity of monomeric enzymes. It is therefore concluded that the mnemonical model which rests on numerous experimental results, obtained by different research groups, on different enzymes is the simplest and most likely explanation of the kinetic subtleties displayed by some monomeric enzymes, and in particular wheat germ hexokinase LI.  相似文献   

2.
The catalytic performance of an enzyme, whether it is monomeric or oligomeric, depends on extra costs of energy in passing from the initial ground state to the various transition states, along the reaction co-ordinate. The improvement, during evolution, of the catalytic performance of individual subunits implies that three structural requirements are met in the course of an enzyme reaction: the unstrained enzyme subunits exist in the ground states under two conformations, one corresponding to the non-liganded state and the other to the liganded state; the inter-subunit strain is relieved in the various transition states; the subunits bound to the various transition states S not equal to, X not equal to and P not equal to have the same conformation. These structural requirements are precisely those which have been used to derive structural rate equations for polymeric enzymes. When subunits are loosely coupled, their arrangement controls the various rate constants, but not the extra costs of energy required to reach the various transition states. Moreover, one cannot expect the rate curve to display any sigmoidicity under these conditions. If subunits are tightly coupled and if the strained non-liganded and half-liganded states are destabilized with respect to the corresponding unstrained states, that is if they contain more conformational energy, the oligomeric enzyme is more catalytically efficient than the ideally isolated subunits. Moreover, if the available conformational energy of the half-liganded state is more than twice that of the non-liganded state, kinetic co-operativity is positive and the rate curve is sigmoidal. It is therefore the extent of inter-subunit strain in the half-liganded state which controls the appearance of sigmoidal kinetic behaviour. If subunits are tightly coupled but if inter-subunit strain is relieved in both the non-liganded and fully-liganded states, the half-liganded state controls both the catalytic efficiency of the enzyme and the sigmoidicity of the rate curve. Sigmoidicity and high catalytic efficiency are to be observed when this half-liganded state is destabilized relative to the corresponding unstrained state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Inhibition studies of glucokinase were carried out with the products of the reaction, glucose 6-phosphate and MgADP-, as well as with ADP3-, Mg2+ and ATP4-. The results of these, together with those of kinetic studies of the uninhibited reaction described previously [Storer & Cornish-Bowden (1976) Biochem. J. 159, 7-14], indicate that the enzyme obeys a 'mnemonical' mechanism. This implies that the co-operativity observed with glucose as substrate arises because glucose binds differentially to two forms of the free enzyme that are not in equilibrium under steady-state conditions. The mechanism predicts the decrease in glucose co-operativity observed at low concentrations of MgATP2-. The product-inhibition results suggest that glucose 6-phosphate is released first and that it is possibly displaced by MgATP2- in a concerted reaction.  相似文献   

4.
The potential kinetic complexity of polymeric regulatory enzymes does not seem to be often expressed in nature. Most of these enzymes exhibit in fact a rather simple kinetic behaviour. This functional simplicity is probably the consequence of constraints between rate constants or of blocking of some reaction steps. Functional simplicity is believed to have emerged in the course of neo-Darwinian evolution as a consequence of a trend towards an improved functional efficiency. Functional efficiency may be reached, in polymeric regulatory enzymes, when either of the two sets of conditions are met. The first set of conditions implies the occurrence of the unicity of enzyme conformation in any transition state, a loose coupling between subunits and an exact balance of the driving forces exerted by the enzyme in the forward and backward directions of the catalytic step. This situation results in constraints between rate constants which allow degenerescence of the steady state rate equation. The second set of conditions involves again the unicity of enzyme conformation in any of the transition states, associated with a tight coupling of subunits, and a driving force exerted by the enzyme much strongly in the forward than in the backward direction of the catalytic step. These conditions imply blocking of some reaction steps and again degenerescence of the corresponding rate equation. The most frequent types of quaternary structure and subunit interactions, namely loose coupling between subunits, and tight coupling associated with conservation of at least one symmetry axis, have probably emerged as molecular organizations, which precisely allow both functional efficiency and simplicity to occur. Indeed these situations probably represent the term of two different evolutionary trends. Therefore enzymes that have not reached this state usually exhibit more complex kinetic behaviour. Wavy curves, “bumps” and turning points may be considered as manifestations of the ancestral character of an enzyme.  相似文献   

5.
Co-operativity in monomeric enzymes   总被引:1,自引:0,他引:1  
It has been known for at least 20 years that monomeric enzymes can in principle show kinetic behaviour similar in appearance to the binding of ligands to oligomeric proteins in which there are co-operative interactions between multiple binding sites. However, the initial lack of experimental examples of kinetic co-operativity suggested that in nature co-operativity always arose from interactions between binding sites. Now, however, several examples are known, most of which cannot be explained in terms of multiple binding sites on one polypeptide chain. All current theoretical models for monomeric co-operativity postulate that it arises from the presence in the mechanism of parallel pathways for substrate binding that are slow compared with the possible rate of the catalytic reaction. Rapid removal of the intermediates produced in the slow steps prevents them from approaching equilibrium and allows the appearance of kinetic properties that would not be possible in systems at equilibrium.  相似文献   

6.
A new model which provides an explanation for pH-induced co-operativity of hysteretic enzymes is proposed. The essence of the model is that a region, or a domain, of the enzyme undergoes a spontaneous 'slow' conformational change which does not affect the geometry of the active site. The region which undergoes this spontaneous conformational transition bears an ionizable group. Kinetic co-operativity occurs if the pK of this ionizable group changes upon this conformational transition. Thus co-operativity does not arise from a distortion of the active site. An interesting prediction of the model is that at 'extreme' pH values co-operativity must be suppressed. Although the kinetic equation pertaining to the model is of the 2:2 type, co-operativity is not maximum or minimum at half-saturation of the enzyme by the substrate, as occurs with 2:2 binding isotherms. A new index of maximum or minimum kinetic co-operativity, whether this extreme occurs at half-saturation or not, has been proposed which allows the change of kinetic co-operativity to be followed as a function of pH. It is believed that this model will be useful in explaining the behaviour of enzymes attached to biological polyelectrolytes, such as membranes or cell envelopes.  相似文献   

7.
Directed mutagenesis has been used to study the nicotinamide subsite of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Residue Asn313 is involved together with the carboxyamide moiety of the nicotinamide ring in a complex network of hydrogen bonding interactions which fix the position of the pyridinium ring of NAD to which hydride transfer occurs at the C-4 position in the catalytic reaction. The asparagine side-chain has been replaced by that of the Thr and Ala residues and results in mutants with very similar properties. Both mutants show much weaker binding of NAD and lower catalytic efficiency. The mutant Asn313----Thr still exhibits strict B-stereospecificity in hydride transfer and retains the property of negative co-operativity in NAD binding. These experiments strongly suggest that the mutant enzyme undergoes the apo----holo sub-unit structural transition associated with coenzyme binding but that the nicotinamide ring is no longer as rigidly held in its pocket as in the wild type enzyme. The results shed light on the details of the molecular interactions which are responsible for negative co-operativity in this enzyme.  相似文献   

8.
The principles of structural kinetics, as applied to dimeric enzymes, allow us to understand how the strength of subunit coupling controls both substrate-binding co-operativity, under equilibrium conditions, and kinetic co-operativity, under steady state conditions. When subunits are loosely coupled, positive substrate-binding co-operativity may result in either an inhibition by excess substrate or a positive kinetic co-operativity. Alternatively, negative substrate-binding co-operativity is of necessity accompanied by negative kinetic co-operativity. Whereas the extent of negative kinetic co-operativity is attenuated with respect to the corresponding substrate-binding co-operativity, the positive kinetic co-operativity is amplified with respect to that of the substrate-binding co-operativity. Strong kinetic co-operativity cannot be generated by a loose coupling of subunits. If subunit is propagated to the other, the dimeric enzyme may display apparently surprising co-operativity effects. If the strain of the active sites generated by subunit coupling is relieved in the non-liganded and fully-liganded states, both substrate-binding co-operativity and kinetic co-operativity cannot be negative. If the strain of the active sites however, is not relieved in these states, negative substrate-binding co-operativity is accompanied by either a positive or a negative co-operativity. The possible occurrence of a reversal of kinetic co-operativity, with respect to substrate-binding co-operativity, is the direct consequence of quaternary constraints in the dimeric enzyme. Moreover, tight coupling between subunits may generate a positive kinetic co-operativity which is not associated with any substrate-binding co-operativity. In other words a dimeric enzyme may well bind the substrate in a non co-operative fashion and display a positive kinetic co-operativity generated by the strain of the active sites.  相似文献   

9.
The binding of a ligand to a one-dimensional lattice in the presence of a second ("rider") ligand, which binds only to the first ligand (piggy-back binding), is studied. A model derived from this study is used to analyze the effects of co-operativity on the reaction rates of enzymes activated by polymeric cofactors that provide multiple binding sites for the enzyme. It is found that in the presence of strong co-operativity, the steady-state reaction rates of polymer-activated enzymes can be very different from the Michaelis-Menten paradigm. By adjusting the co-operativity parameters and the binding constants of the ligands, the model can generate apparent auto-catalytic enhancement by substrates at low substrate concentrations and apparent substrate inhibition at high substrate concentrations. The model is shown to be able to explain the differences in the rates of ATP hydrolysis by DNA gyrase in the presence of long versus short DNA molecules and in the presence of long DNA molecules at different gyrase to DNA ratios.  相似文献   

10.
Cytochrome c oxidase isolated from hammerhead shark red muscle is monomeric in relation to the dimeric form of isolated bovine cytochrome c oxidase but in other ways bears a close resemblance to the enzyme isolated from mammalian tissue [1, 2]. Comparative studies of shark and bovine cytochrome c oxidase were extended to address the degree of functional similarity between the monomeric (shark) and dimeric (bovine) enzymes in the kinetics of peroxide binding and in the extent to which the catalytic action of the enzymes in vesicles can establish a proton gradient. Although the kinetics of peroxide binding and the proton pumping processes are complex, the dimeric and monomeric forms are quite similar with respect to these functional attributes. The kinetic heterogeneity of the process of peroxide binding is expressed in the shark enzyme as well as in the bovine enzyme, and both types of enzymes in vesicles can generate transmembrane proton gradients. On this basis we conclude that the dimeric state of isolated cytochrome c oxidase from mammalian sources is not essential for its function in vitro.  相似文献   

11.
The expression of the kinetic Hill coefficient for a two-substrate, two-product mnemonical enzyme has been derived. Its relation with the gamma coefficient, that is the slope of the reciprocal plots for 1/[A]----O, has been established. The variation of this Hill coefficient, as a function of the second substrate and product concentrations, has been studied theoretically. Whereas the gamma coefficient does not vary as a function of the substrate and first product concentrations, the kinetic Hill coefficient does. If the enzyme is positively co-operative, the Hill coefficient increases upon increasing the second substrate concentration and decreases if the first product concentration is increased. The converse is expected to occur if the enzyme displays a negative co-operativity. The last product may either reverse a positive co-operativity into a negative one or, alternatively, strengthen an already negative co-operativity. The co-operativity generated by the mnemonical model has been compared to the kinetic behaviour of a random model. These two models have been shown to be discriminated on the basis of the departure they show with respect to the Michaelis-Menten behaviour. These theoretical considerations have been applied to previously published data, obtained with wheat germ hexokinase LI. This monomeric enzyme has a negative co-operativity with respect to the preferred substrate, glucose. The Hill coefficient decreases with MgATP concentration, increases with MgADP concentration and decreases with glucose-6-phosphate concentration. This is exactly what is to be expected on the basis of the above theory of kinetic co-operativity.  相似文献   

12.
The kinetic behaviour of adsorptive enzyme systems with free and adsorbed enzyme forms in rapid equilibrium has been analysed. It has been shown that the dependences of enzymic reaction rate on substrate or “adsorptive effector” concentrations reveal the deviations from simple kinetic laws of Michaelis-Menten type (positive or negative kinetic co-operativity). Such kinetic anomalies should be observed when adsorption of the enzyme results in the changing catalytic properties and when the state of the equilibrium between free and bound enzyme forms depends on the presence of low molecular substances (substrates, coenzymes and various cellular metabolites). The physiological significance of adsorption-desorption processes for the enzyme activity regulation has been emphasized.  相似文献   

13.
Arrhenius plots of the non-latent UDP-glucuronlytransferase reverse reaction (p-nitrophenyl glucuronide donor) activity of guinea-pig microsomal membranes prepared with 15 mM-KCl were linear from 5 to 40 degrees C. These plots for other preparations from guinea-pig and rat liver (i.e. preparations that show transferase latency) exhibited two linear regions intersecting at a transition point near 19--21 degrees C. This discontinuity was abolished when latency was removed by treating the membranes with perturbants of phospholipid-bilayer structure. Thus the temperature-depdendnces of the reverse reaction catalysed by the enzymes of these various preparations are similar to those of the corresponding forward reactions [Pechey, Graham & Wood (1978) Biochem. J. 175, 115--1124]. Perturbants activated the enzyme of KCl-prepared guinea-pig microsomal membranes only slightly and caused no significant alteration to Arrhenius plots of its forward or reverse reaction activities. These results support the 'compartmentation' theory of UDP-glucuronyltransferase lactency.  相似文献   

14.
When an enzyme is bound to an insoluble polyelectrolyte it may acquire novel kinetic properties generated by Donnan effects. It the enzyme is homogeneously distributed within the matrix, a variation of the electrostatic partition coefficient, when substrate concentration is varied, mimics either positive or negative co-operativity. This type of non-hyperbolic behaviour may be distinguished from true co-operativity by an analysis of the Hill plots. If the enzyme is heterogeneously distributed within the polyelectrolyte matrix, an apparent negative co-operativity occurs, even if the electrostatic partition coefficient does not vary when substrate concentration is varied in the bulk phase. If the partition coefficient varies, mixed positive and negative co-operativities may occur. All these effects must be suppressed by raising the ionic strength in the bulk phase. Attraction of cations by fixed negative charges of the polyanionic matrix may be associated with a significant decrease of the local pH. The magnitude of this effect is controlled by the pK of the fixed charges groups of the Donnan phase. The local pH cannot be much lower than the value of this pK. This effect may be considered as a regulatory device of the local pH. Acid phosphatase of sycamore (Acer pseudoplatanus) cell walls is a monomeric enzyme that displays classical Michaelis-Menten kinetics in free solution. However, when bound to small cell-wall fragments or to intact cells, it has an apparent negative co-operativity at low ionic strength. Moreover a slight increase of ionic strength apparently activates the bound enzymes and tends to suppress the apparent co-operativity. At I0.1, or higher, the bound enzyme has a kinetic behavior indistinguishable from that of the purified enzyme in free solution. These results are interpreted in the light of the Donnan theory. Owing to the repulsion of the substrate by the negative charges of cell-wall polygalacturonates, the local substrate concentration in the vicinity of the bound enzyme is smaller than the corresponding concentration in bulk solution. The kinetic results obtained are consistent with the view that there exist at least three populations of bound enzyme with different ionic environments: a first population with enzyme molecules not submitted to electrostatic effects, and two other populations with molecules differently submitted to these effects. The theory allows one to estimate the proportions of enzyme belonging to these populations, as well as the local pH values and the partition coefficients within the cell walls.  相似文献   

15.
The dynamic behaviour of an open futile cycle composed of two enzymes has been investigated in the vicinity of a steady-state. A necessary condition required for damped or sustained oscillations of the system is that enzyme E2, which controls recycling of the substrate S2, be inhibited by an excess of this substrate. In order for the system to be neutrally stable and therefore to exhibit sustained oscillations, it is not necessary for antagonist enzyme E1 to be activated by its product S2. If it is enzyme E1 which is inhibited by an excess of its substrate S1, the system has a saddle point. Other conditions for stability or instability of the system have been determined. If the enzyme E1, which is not inhibited by the substrate, exhibits a slow conformational transition of the mnemonical type, this transition dramatically alters the stability behavior of the system. If the mnemonical enzyme E1 were exhibiting a positive kinetic co-operativity, decreasing the rate of the conformational transition of the mnemonical enzyme will increase the stability of the whole system and will tend to damp the oscillations in the vicinity of the steady-state. If conversely the mnemonical enzyme E1 were exhibiting a negative kinetic co-operativity, decreasing the rate of the enzyme conformational transition will decrease the stability of the system and will tend to create or amplify oscillations of the system taken as a whole. If these results may be extended to more complex metabolic cycles, involving more than two enzymes, it may be tentatively considered that positive co-operativity associated with slow transition has emerged in the course of evolution in order to limit temporal instabilities of metabolic cycles. Alternatively one may speculate that the “biological function” of negative co-operativity is to create or amplify these temporal instabilities.  相似文献   

16.
Lipoamide dehydrogenase from pig heart exists in monomer-dimer equilibrium. The effect of the state of subunit aggregation on the multifunctionality of lipoamide dehydrogenase was investigated by the use of chemically trapped monomeric and dimeric enzymes. Reductive carboxymethylation with 2-mercaptoethanol-iodoacetate yields the stable monomeric enzyme which has been isolated for structural and kinetic studies. The chemically induced monomerization is accompanied by conformational changes resulting in an increased mobility of flavin-adenine dinucleotide. The chemically trapped monomer shows an enhanced diaphorase activity, a reduced electron transferase activity, and a complete loss in dehydrogenase as well as transhydrogenase activities. The enhanced diaphorase activity is associated with increased catalytic efficiencies and the reversal of an inhibitory NADH effect at high concentrations. Treatment of lipoamide dehydrogenase with dimethyl suberimidate gives amidinated samples containing crosslinked dimer. The crosslinked enzyme exhibits a higher dehydrogenase catalytic efficiency than the noncrosslinked enzyme with different kinetic mechanisms without significantly affecting the kinetic parameters of diaphorase reaction. Although the dimeric structure is intimately associated with the dehydrogenase activity, it does not preclude the diaphorase activity. An altered flavin-adenine dinucleotide environment accompanying monomerization is likely responsible for the enhanced diaphorase activity.  相似文献   

17.
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1–5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125–0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125–0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.  相似文献   

18.
The co-operativity of homotropic interactions between substrate molecules in oligomeric enzymes is analyzed in the frame of the concerted transition theory of Monod et al. (1965). A discussion of the Hill coefficient nH allows determination of the conditions for negative co-operativity (nH < 1). This phenonomenon, usually taken as indicative of a sequential mechanism (Koshland et al., 1966), can be accounted for by the concerted model when the enzyme represents a K-V or V system, i.e. when the two protomer conformational states postulated in the theory differ in their catalytic activity. However, only negative co-operativity for catalysis can be explained by the concerted model, not negative co-operativity of binding.  相似文献   

19.
Kinetic analysis of protein modification reactions at equilibrium.   总被引:1,自引:1,他引:0       下载免费PDF全文
A kinetic analysis is presented of reactions of protein modification, and/or of modification-induced enzyme inactivation, which can formally be described by a single exponential function, or by a summation of two exponential functions, of reaction time plus a constant term. The reaction schemes compatible with the kinetic formalism of these cases are given, and a simple kinetic criterion is described whereby the identification of one of these cases, strong negative protein modification co-operativity, may be carried out. The treatment outlined in this paper is applied to a case from the literature, the inactivation of glyceraldehyde-3-phosphate dehydrogenase by butane-2,3-dione [Asriyants, Benkevich & Nagradova (1983) Biokhimiya (Engl. Transl.) 48, 164-171].  相似文献   

20.
The mechanism of action of bovine pancreatic carboxypeptidase. Aalpha (peptidyl-L-amino acid hydrolase; EC 3.4.12.2) has been investigated by application of cryoenzymologic methods. Kinetic studies of the hydrolysis of the specific ester substrate O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate have been carried out with both the native and the Co2+-substituted enzyme in the 25 to --45 degrees C temperature range. In the --25 to --45 degrees C temperature range with enzyme in excess, a biphasic reaction is observed for substrate hydrolysis characterized by rate constants for the fast (kf) and the slow (ks) processes. In Arrhenius plots, ks extrapolates to kcat at 25 degrees C for both enzymes in aqueous solution, indicating that the same catalytic rate-limiting step is observed. The slow process is analyzed for both metal enzymes, as previously reported (Makinen, M. W., Yamamura, K., and Kaiser, E. T. (1976) Proc Natl. Acad. Sci. U. S. A. 73, 3882-3886), to involve the deacylation of a mixed anhydride acyl-enzyme intermediate. Near --60 degrees C the acyl-enzyme intermediate of both metal enzymes can be stabilized for spectral characterization. The pH and temperature dependence of ks reveals a catalytic ionizing group with a metal ion-dependent shift in pKa and an enthalpy of ionization of 7.2 kcal/mol for the native enzyme and 6.2 kcal/mol for the Co2+ enzyme. These parameters identify the ionizing catalytic group as the metal-bound water molecule. Extrapolation of the pKa data to 25 degrees C indicates that this ionization coincides with that observed in the acidic limb of the pH profile of log(kcat/Km(app)) for substrate hydrolysis under steady state conditions. The results indicate that in the esterolytic reaction of carboxypeptidase. A deacylation of the mixed anhydride intermediate is catalyzed by a metal-bound hydroxide group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号