首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Serum immunoglobulin concentration and skin reactivity to at least three recall antigens were determined in 210 patients with chronic myeloid leukemia (CML). Immunoglobulin concentration was normal in the great majority of the patients. Skin tests were negative in 50 of 210 cases (24%). No relationship could be demonstrated between skin reactivity, age, time since diagnosis, WBC, lymphocyte count, and splenectomy. Prior antileukemic therapy was a major factor in determining the response to skin tests.S. Tura (Chairman) and M. Baccarani (Secretary), Cattedra di Ematologia dell'Università e Servizio di Ematologia dell'Ospedale S. Orsola, Bologna; G. de Sandre, G. Perona, G. Cetto, G. Pizzolo, Istituto di Patologia Medica e Cattedra di Ematologia dell'Università, Verona; P. Rambotti, B. Falini, Clinica Medica dell'Università, Perugia; T. Chisesi, G. Capnist, Divisione di Ematologia, Ospedale Civile, Vicenza; A. Cajozzo, P. Citarella, Cattedra di Ematologia dell'Università, Palermo; G. Broccia, Sezione di Ematologia, Ospedale Armando Businco, Cagliari; V. Liso, G. Troccoli, Clinica Medica II dell'Università, Bari; L. Bruzzese, G. Nappi, A. Abbadessa, Clinica Medica (I Facoltà) dell'Università, Napoli; A. Porcellini, C. Delfini, Divisione di Ematologia, Ospedali Riuniti, Pesaro; E. Cacciola, R. Giustolisi, R. Musso, V. Raimondi, Cattedra di Ematologia dell'Università, Catania; G. Torlontano, L. Geraci, Cattedra di Ematologia dell'Università, Chieti, e Divisione di Ematologia, Ospedale Civile, Pescara; F. Mandelli, G. Mariani, B. Monarca, N. Petti, Cattedra di Ematologia dell'Università, Roma; R. di Guglielmo, A. Miliani, Clinica Medica dell'Università, Firenze; C. Bernasconi, M. Lazzarino, G. Castelli, Divisione di Ematologia, Ospedale S. Matteo, Pavia; A. Alberti, S. Magro, Servizio di Ematologia, Ospedale Generale Regionale, Catanzaro; A. Neri, P. Iacopino, Divisione di Ematologia, Ospedali Riuniti, Reggio Calabria; R. Delsignore, M. C. Baroni, Istituto di Patologia Medica dell'Universita, Parma; E. Bajetta, S. Monfardini, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano; S. Tognella, Istituto Scientifico di Medicina Interna, Cattedra di Clinica Medica 2R, Università, Genova.  相似文献   

2.
Bradyrhizobium japonicum was absent and only low numbers of Rhizobium were present in nodulating forage legumes in 13 soil samples from the Jubba and Shabelle rivers of Somalia.The authors are with the Dipartimento di Biologia Vegetale Sez, Microbiologia Applicata, Università degli Studi di Perugia, via Borgo XX Giugno 74, 06100 Perugia, Italy  相似文献   

3.
Bioleaching of a pyrite ore containing high concentrations of cobalt (0.1%) and zinc (0.065%) was affected by small amounts of calcitic gangue (from 0.01 to 1.01%). Results from an air-lift percolator and from Erlenmeyer flask experiments show that a small percentage of calcite raises the pH and arrests the growth of the acidophilic bacterium Thiobacillus ferrooxidans. In percolator experiments, when calcite is completely removed by the continuous addition of small quantities of acid, and the pH of the liquor becomes acid, the micro-organism begins to grow and to bio-oxidize the pyrite ore. The growth of T. ferrooxidans shows different lag phase spans (from 13 to 190 days) depending on carbonate dissolution. The metals Fe, Zn and Co are released into the leaching solution together at different rates after a lag-time which depends on calcite concentrations in pyrite gangue. Metal ratios in the mineral bulk are different from those in the liquor, Zn dissolving 5 times more readily than Co. Bioleaching rates for metal removal from pyrite are higher in percolator (for Fe, from 5 to 15 mg/l/h) than in flask experiments (from 0.5 to 2 mg/l/h), but the lag phases are shorter (from 2 to 65 days). The differences between the two systems are related to calcite dissolution and gypsum precipitation.F. Baldi is with the Università di Siena, Dipartimento di Biologia Ambientale, via P. A. Mattioli, 4, I-53100 Siena. A. Bralia, F. Riccobono and G. Sabatini are with the Università di Siena, Istituto di Mineralogia I-53100 Siena, Italy.  相似文献   

4.
The present article reviews studies of the structure and functional roles of the cardiolipin analogues of extremely halophilic prokaryotes belonging to the Archaea domain. Analogies and differences between the archaeal bisphosphatidylglycerol and the mitochondrial cardiolipin are presented. Furthermore the structure of archaeal glycophospholipid dimers is illustrated together with the available information on their function. The studies on the function of cardiolipin analogues in archaebacteria point out the tight interaction established by these phospholipids with membrane proteins and their role as bioactive lipids in the adaptation of microorganisms to osmotic stress.  相似文献   

5.
In extreme environments, mainly Archaea are encountered. The archaeal cytoplasmic membrane contains unique ether lipids that cannot easily be degraded, are temperature- and mechanically resistant, and highly salt tolerant. Moreover, thermophilic and extreme acidophilic Archaea possess membrane-spanning tetraether lipids that form a rigid monolayer membrane which is nearly impermeable to ions and protons. These properties make the archaeal lipid membranes more suitable for life and survival in extreme environments than the ester-type bilayer lipids of Bacteria or Eukarya. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

6.
Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.  相似文献   

7.
The lipid membrane is one of the most characteristic traits distinguishing the three domains of life. Membrane lipids of Bacteria and Eukarya are composed of fatty acids linked to glycerol‐3‐phosphate (G3P) via ester bonds, while those of Archaea possess isoprene‐based alkyl chains linked by ether linkages to glycerol‐1‐phosphate (G1P), resulting in the opposite stereochemistry of the glycerol phosphate backbone. This ‘lipid divide’ has raised questions on the evolution of microbial life since eukaryotes are thought to have evolved from the Archaea, requiring a radical change in membrane composition. Here, we searched for homologs of enzymes involved in membrane lipid and fatty acid synthesis in a wide variety of archaeal genomes and performed phylogenomic analyses. We found that two uncultured archaeal groups, i.e. marine euryarchaeota group II/III and ‘Lokiarchaeota’, recently discovered descendants of the archaeal ancestor leading to eukaryotes, lack the gene to synthesize G1P and, consequently, the capacity to synthesize archaeal membrane lipids. However, our analyses reveal their genetic capacity to synthesize G3P‐based ‘chimeric lipids’ with either two ether‐bound isoprenoidal chains or with an ester‐bound fatty acid instead of an ether‐bound isoprenoid. These archaea may reflect the ‘archaea‐to‐eukaryote’ membrane transition stage which have led to the current ‘lipid divide’.  相似文献   

8.
A comparative study between archaeosomes, lipid lamellar vesicles made from archaea polar lipids, and conventional phospholipids liposomes was carried out, aiming at evaluating the properties and the potential of archaeosomes as novel colloidal carriers for effective drug delivery to the skin. Betamethasone dipropionate (BMD)–loaded archaeosomes and conventional liposomes were prepared by the thin-lipid film and sonication procedures, using, respectively, archaeal lipids extracted from archaea Halobacterium salinarum and enriched soy phosphatidylcholine. Vesicular formulations were characterized by assessing vesicle size, zeta potential, incorporation efficiency, and morphology. In order to investigate the effect of the incorporation in the two different colloidal carrier systems on the (trans)dermal delivery of BMD, in vitro drug permeation studies through full-thickness pig skin were carried out by using Franz diffusion vertical cells by testing both archaeal and liposomal dispersions. Interestingly, archaeosomes appeared to be the most effective carriers for the model drug, achieveing a major drug penetration and accumulation in the skin strata, especially in the epidermis. This can, presumably, be due to the enhanced archaeosomal bilayer fluidity, as indicated by the rheological studies that provided insight into the viscoelastic properties of all the studied systems. The available data suggest that suitably developed archaeosomes may hold great promise as delivery vehicles for topical applications.  相似文献   

9.
Phospholipids are major components of the cellular membranes present in all living organisms. They typically form a lipid bilayer that embroiders the cell or cellular organelles, constitute a barrier for ions and small solutes and form a matrix that supports the function of membrane proteins. The chemical composition of the membrane phospholipids present in the two prokaryotic domains Archaea and Bacteria are vastly different. Archaeal lipids are composed of highly-methylated isoprenoid chains that are ether-linked to a glycerol-1-phosphate backbone while bacterial phospholipids consist of straight fatty acids bound by ester bonds to the enantiomeric glycerol-3-phosphate backbone. The chemical structure of the archaeal lipids and their compositional diversity ensures the required stability at extreme environmental conditions as many archaea thrive at such conditions including high or low temperature, high salinity and extreme acidic or alkaline pH values. However, not all archaea are extremophiles, and the presence of ether-linked phospholipids is a phylogenetic marker that distinguishes Archaea from other life forms. During the past decade, our understanding of the biosynthesis of archaeal lipids has progressed resulting in the characterization of the main biosynthetic steps of the pathway including the reconstitution of lipid biosynthesis in vitro. Here we describe the chemical and physical properties of archaeal lipids and membranes derived thereof, summarize the existing knowledge about the enzymology of the archaeal lipid biosynthetic pathway and discuss evolutionary theories associated with the “Lipid Divide” that resulted in the differentiation of bacterial and archaeal organisms. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.  相似文献   

10.
The 16S ribosomal DNA based distinction between the bacterial and archaeal domains of life is strongly supported by the membrane lipid composition of the two domains; Bacteria generally contain dialkyl glycerol diester lipids, whereas Archaea produce isoprenoid dialkyl glycerol diether and membrane-spanning glycerol dialkyl glycerol tetraether (GDGT) lipids. Here we show that a new group of ecologically abundant membrane-spanning GDGT lipids, containing branched instead of isoprenoid carbon skeletons, are of a bacterial origin. This was revealed by examining the stereochemistry of the glycerol moieties of those branched tetraether membrane lipids, which was found to be the bacterial 1,2-di-O-alkyl-sn-glycerol stereoconfiguration and not the 2,3-di-O-alkyl-sn-glycerol stereoconfiguration as in archaeal membrane lipids. In addition, unequivocal evidence for the presence of cyclopentyl moieties in these bacterial membrane lipids was obtained by NMR. The biochemical traits of biosynthesis of tetraether membrane lipids and the formation of cyclopentyl moieties through internal cyclization, which were thought to be specific for the archaeal lineage of descent, thus also occur in the bacterial domain of life.  相似文献   

11.
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra‐high‐pressure liquid chromatography coupled to high‐resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80–110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy‐GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME‐1b clades dominated. Correlation analyses suggest that the IPLs GDGT‐0, GDGT‐1, and GDGT‐2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME‐1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho‐dihexose and hexose‐glucuronic acid head groups.  相似文献   

12.
Archaea have developed specific tools permitting life under harsh conditions and archaeal lipids are one of these tools. This microreview describes the particular features of tetraether-type archaeal lipids and their potential applications in biotechnology. Natural and synthetic tetraether lipid structures as well as their applications in drug/gene delivery, vaccines and proteoliposomes or as lipid films are reviewed.  相似文献   

13.
Extremophiles - The sole unifying feature of Archaea is the use of isoprenoid-based glycerol lipid ethers to compose cellular membranes. The branched hydrocarbon tails of archaeal lipids are...  相似文献   

14.
A series of novel cationic lipids based on 1,4,7-triazacyclononane (TACN) with different hydrophobic chains were synthesized via the formation of a biodegradable ester bond. These lipids were found to have good buffering capacity at the pH range of 5.0-6.5, which is similar to that of the acidic endosomal compartments. The liposomes formed from these lipids and DOPE could condense DNA into nanoparticles with proper sizes. In vitro experiments showed moderate to good gene transfection efficiency of the formed lipoplexes. The structure-activity relationships of this type of lipids were discussed.  相似文献   

15.
Archaeal membrane lipids are structurally different from bacterial and eukaryotic membrane lipids, but little is known about the enzymes involved in their synthesis. In a recent study, Exterkate et al. identified and characterized a cardiolipin synthase from the archaeon Methanospirillum hungatei. This enzyme can synthesize archaeal, bacterial, and mixed archaeal/bacterial cardiolipin species from a wide variety of substrates, some of which are not even naturally occurring. This discovery could revolutionize synthetic lipid biology, being used to construct a variety of lipids with nonnatural head groups and mixed archaeal/bacterial hydrophobic chains.  相似文献   

16.
Mid‐ocean spreading and accompanying hydrothermal activities result in huge areas with exposure of minerals rich in reduced chemicals – basaltic and peridotitic rocks as well as metal sulfide precipitates – to the oxygenated seawater. Oxidation of Fe and S present in these rocks provides an extensive long‐term source of energy to lithotrophs. Investigation of lipid biomarkers and their carbon isotope ratios from a massive iron sulfide of an inactive sulfide mound or inactive chimney sampled at the western flank of the Turtle‐Pits hydrothermal field (Mid‐Atlantic Ridge, 5°S) revealed a unique lipid distribution. The bacterial fauna appears to be dominated by chemolithotrophs with a distinct lipid composition mainly comprising of iso‐branched fatty acids and nonisoprenoidal dialkyl glycerol diethers partially including the very rare macrocyclic cores with 30–35 carbon atoms (including 13,16‐dimethyloctacosane and 5,13,16‐trimethyloctacosane). The Bacteria are accompanied by most likely hydrogen/CO2‐dependent methanogenic Archaea (e.g. Methanococcus) as well as other Archaea with a different life style (e.g. Ferroplasma). Alike some of the bacterial lipids the archaeal lipids predominantly consist of macrocyclic diethers including one C40 and one C41 isoprenoid. Structural homologues of the latter are so far only reported from a methanogenic archaeum and a Pleistocene sulfur deposit. Compound‐specific analyses of the stable isotope ratios revealed δ13C values for the majority of bacterial and archaeal lipid components of about 0‰ (vs. VPDB), indicative for chemolithoautotrophically fixed carbon which is, for distinct pathways, accompanied by only negligible fractionations. However, the presence of methanogenic Archaea is indicated by 13C‐depleted isoprenoidal lipids (δ13C ~ –50‰) characteristic for certain CO2‐reducing methanogens synthesizing lipids via acetyl CoA.  相似文献   

17.
Two novel cardiolipin derivatives were recently detected in Halobacterium salinarum, namely an archaeal analog of bisphosphatidylglycerol (BPG) and a glycocardiolipin (GlyC). GlyC was found to be tightly bound to bacteriorhodopsin. To obtain information on the presence and distribution of these archaeal cardiolipins, we have analyzed the lipids extracted from the crystallizer ponds of the salterns of Margherita di Savoia (Italy) and Eilat (Israel) and from cultures of representative species of the Halobacteriaceae by electrospray ionization mass spectrometry. BPG was present as a minor lipid component in the lipids extracted from the biomass of the Margherita di Savoia and the Eilat salterns, while GlyC was detected only in the extract of the biomass of Margherita di Savoia. Both compounds were enriched in the membrane fraction obtained by dialysis of the cells against distilled water. We detected BPG in all members of the Halobacteriaceae tested, but GlyC has so far been found only in the genera Halobacterium and Haloarcula. A sulfated diglycosyl diether was the major glycolipid detected in the biomass of both salterns.  相似文献   

18.
Archaea produce membrane lipids that typically possess fully saturated isoprenoid hydrocarbon chains attached to the glycerol moiety via ether bonds. They are functionally similar to, but structurally and biosynthetically distinct from, the fatty acid-based membrane lipids of bacteria and eukaryotes. It is believed that the characteristic lipid structure helps archaea survive under severe conditions such as extremely low or high pH, high salt concentrations, and/or high temperatures. We detail here the first successful production of an intact archaeal membrane lipid, which has fully saturated isoprenoid chains, in bacterial cells. The introduction of six phospholipid biosynthetic genes from a methanogenic archaeon, Methanosarcina acetivorans, in Escherichia coli enabled the host bacterium to synthesize the archaeal lipid, i.e., diphytanylglyceryl phosphoglycerol, while a glycerol modification of the phosphate group was probably catalyzed by endogenous E. coli enzymes. Reduction of the isoprenoid chains occurred only when archaeal ferredoxin was expressed with geranylgeranyl reductase, suggesting the role of ferredoxin as a specific electron donor for the reductase. This report is the first identification of a physiological reducer for archaeal geranylgeranyl reductase. On the other hand, geranylgeranyl reductase from the thermoacidophilic archaeon Sulfolobus acidocaldarius could, by itself, replace both its orthologue and ferredoxin from M. acetivorans, which indicated that an endogenous redox system of E. coli reduced the enzyme.  相似文献   

19.
Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS), from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS), phosphatidylglycerol synthase (PGS) and phosphatidylinositol synthase (PIS) derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF) tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea roughly corresponded to the experimentally identified distribution of archaetidylglycerol or archaetidylinositol. The molecular phylogenetic tree patterns and the correspondence to the membrane compositions suggest that the two clusters in this group correspond to archaetidylglycerol synthases and archaetidylinositol synthases. No archaeal hypothetical protein with sequence similarity to known phosphatidylcholine synthases was detected in this study.  相似文献   

20.
We have adapted the procedure for the isolation of PSII membranes from higher plants (D.A. Berthold et al., 1981, FEBS Lett. 134, 231–234) to the green algae Chlamydomonas reinhardtii. The chlorophyll (Chl)-binding proteins from this PSII preparation have been further separated into single Chl-binding polypeptides and characterized spectroscopically. Seven single polypeptides were shown to bind Chl a and Chl b. In particular, we demonstrate that polypeptides p9, p10 and p22, which had not been previously shown to bind Chl a and b, have characteristics similar to those of CP29, CP26 and CP24 from higher plants. We note, however, that p9 and p10 are phosphorylatable in C. reinhardtii, at variance with CP29 and CP26 from higher plants. Our data support the notion that the PSII antenna systems in C. reinhardtii and in higher plants are very similar. Therefore, studies on the organization and regulation of light-harvesting processes in C. reinhardtii may provide information of general relevance for both green algae and higher plants.Abbreviations Chl chlorophyll - IEF isoelectrofocusing - LHC light harvesting complex - MW molecular weight - PAGE polyacrylamide gel electrophoresis - PS photosystem - RC reaction centre - SDS sodium dodecylsulfate We thank Dr. J. Olive (Institut Jacques Monod, Paris, France) for the electron-microscopy analysis, C. de Vitry (Institut de Biologie Physico-Chimique, Paris, France) for the kind gift of a PSII RC preparation and P. Dainese and M.L. Di Paolo (Universitá di Padova, Padova, Italy) for helpfull discussions. Professor Strasser and Elizbeth Scwartz (Université de Genova, Genova, Switzerland) are thanked for assistance in taking low-temperature fluorescence emission spectra. Roberto Bassi was recipient of a short-term fellowship from the European Molecular Biology Organization fellowship, during the early phases of the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号