首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type VI collagen is a nonfibrillar collagen present as a network throughout the chick secondary stroma. Immunolocalization of type VI collagen both in the chick corneal stroma and in other systems demonstrates that type VI collagen is present associated with cells and between striated fibrils. We hypothesize that type VI collagen may function in cell-matrix interactions important in corneal development. To examine this possibility, we have isolated and characterized bovine corneal type VI collagen and determined that the chain composition and morphology of type VI collagen isolated from cornea is similar to that isolated from other sources. The tissue form of type VI collagen was localized to filaments forming a network around fibrils and close to corneal fibroblasts. We then analyzed relative attachment and spreading on type VI collagen as compared to the other collagens present in the secondary stroma, and found that although corneal fibroblasts attach equally well to type VI and type I collagen, cells spread to a much greater extent on type VI collagen. Although corneal fibroblasts do have an RGD-dependent receptor which functions during adhesion to fibronectin, attachment to type VI collagen is RGD-independent unless the molecule is denatured. Blocking of the RGD-dependent receptor with soluble RGD peptides results in no change in attachment or spreading. These data imply a role for type VI collagen in cell-matrix interactions during corneal stroma development.  相似文献   

2.
Mouse-hatched blastocysts cultured in vitro will attach and form outgrowths of trophoblast cells on appropriate substrates, providing a model for implantation. Immediately after hatching, the surfaces of blastocysts are quiescent and are not adhesive. Over the period 24-36 h post-hatching, blastocysts cultured in serum-free medium become adhesive and attach and spread on the extracellular matrix components fibronectin, laminin, and collagen type IV in a ligand specific manner. Attachment and trophoblast outgrowth on these substrates can be inhibited by addition to the culture medium of an antibody, anti-ECMr (anti-extracellular matrix receptor), that recognizes a group of 140-kD glycoproteins similar to those of the 140-kD extracellular matrix receptor complex (integrin) recognized in avian cells by CSAT and JG22 monoclonal antibodies. Addition to the culture medium of a synthetic peptide containing the Arg-Gly-Asp tripeptide cell recognition sequence of fibronectin inhibits trophoblast outgrowth on both laminin and fibronectin. However, the presence of the peptide does not affect attachment of the blastocysts to either ligand. Immunoprecipitation of 125I surface-labeled embryos using anti-ECMr reveals that antigens recognized by this antibody are exposed on the surfaces of embryos at a time when they are spreading on the substrate, but are not detectable immediately after hatching. Immunofluorescence experiments show that both the ECMr antigens and the cytoskeletal proteins vinculin and talin are enriched on the cell processes and ventral surfaces of trophectoderm cells in embryo outgrowths, in patterns similar to those seen in fibroblasts, and consistent with their role in adhesion of the trophoblast cells to the substratum.  相似文献   

3.
We have studied the ability of human gingival fibroblasts (HGF) to attach to different interstitial (types I, II and III) and basement membrane (types IV and V) collagens. HGF cells were plated onto collagen-coated Petri dishes under various conditions and the percentage of cells attaching to the collagen was determined. HGF were found to attach to all the different types of native collagens, but attached poorly to the corresponding denatured collagens. When plated in the presence of 15% fetal bovine serum (FBS) or fibronectin-depleted FBS, similar percentages (approximately 85%) of cells attached to both interstitial and basement membrane collagens, demonstrating an attachment mechanism that is independent of plasma fibronectin. That the attachment in the presence of serum was also independent of cellular fibronectin was shown by the inability of fibronectin antibodies to block attachment to any of the collagen types. HGF were also capable of attaching to all of the collagen types in the complete absence of serum. In previous studies, investigators using cell lines have suggested that cell attachment in the absence of serum is non-physiological. However, the serum-free attachment of HGF to collagen was found to be dependent on cellular protein synthesis indicating that this attachment mechanism has biological significance.  相似文献   

4.
The synthetic cell attachment-promoting peptides from fibronectin (Pierschbacher, M. D., and E. Ruoslahti, 1984, Nature (Lond.)., 309:30-33) were found to detach cultured cells from the substratum when added to the culture in a soluble form. Peptides ranging in length from tetrapeptide to heptapeptide and containing the active L-arginyl-glycyl-L-aspartic acid (Arg-Gly-Asp) sequence had the detaching activity, whereas a series of different peptides with chemically similar structures had no detectable effect on any of the test cells. The Arg-Gly-Asp-containing peptides caused detachment of various cell lines of different species and histogenetic origin. Studies with defined substrates showed that the active peptides could inhibit the attachment of cells to vitronectin in addition to fibronectin, indicating that vitronectin is recognized by cells through a similar mechanism as fibronectin. The peptides did not inhibit the attachment of cells to collagen. However, cells cultured on collagen-coated plastic for 24-36 h, as well as cells with demonstrable type I or type VI collagen in their matrix, were susceptible to the detaching effect of the peptides. These results indicate that the recognition mechanism(s) by which cells bind to fibronectinand vitronectin plays a major role in the substratum attachment of cells and that collagens may not be directly involved in cell-substratum adhesion. Since vitronectin is abundant in serum, it is probably an important component in mediating the attachment of cultured cells. The independence of the effects of the peptide on the presence of serum and the susceptibility of many different cell types to detachment by the peptide show that the peptides perturb an attachment mechanism that is intrinsic to the cells and fundamentally significant to their adhesion.  相似文献   

5.
We report a study of the substratum and medium requirements for attachment and neurite outgrowth by cells of the pheochromocytoma-derived PC12 line. In attachment medium containing both Ca2+ and Mg2+, more than 50% of cells attached within 1 hr to petri dishes coated with native collagen Types I/III or II, native or denatured collagen Type IV, laminin, wheat germ agglutinin (WGA), or poly-L-lysine; attachment to dishes coated with nerve growth factor (NGF) was only about 20% and attachment to uncoated dishes or to dishes coated with fibronectin or gelatin was almost nil. Neither prior culturing in the presence of NGF nor addition of NGF to the attachment medium significantly affected the extent of attachment to collagen or laminin. With Ca2+ (1 mM) as the sole divalent cation, cells attached normally to WGA, polylysine, and NGF, but failed to attach to collagen or laminin. With Mg2+ (1 mM) as the only divalent cation, attachment to all substrata was about the same as in medium with both Ca2+ and Mg2+. Like the ionic requirements, the kinetics of attachment, insensitivity to protease treatment of the cells, and inhibition by low temperature and sodium azide were similar for PC12 attachment to collagen and laminin, suggesting that a common molecular mechanism may underlie attachment to these substrata. The only significant difference observed was that addition of WGA (30 micrograms/ml) to the attachment medium inhibited attachment to collagen but promoted attachment to laminin. Finally, PC12 cells extended neurites on laminin, on native collagens I/III, II, and IV, and on denatured collagen IV; they did not extend neurites on denatured collagens I/III or II, NGF, or WGA. Neurite outgrowth on collagen and laminin occurred with Mg2+ as the sole divalent cation. These results suggest that the same Mg2+-dependent adhesion mechanism operates at the cell body and at the growth cone.  相似文献   

6.
Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Interaction of collagen with fibronectin is important for extracellular matrix assembly and regulation of cellular processes. A fibronectin-binding region in collagen was identified using unfolded fragments, but it is not clear if the native protein binds fibronectin with the same primary sequence. A recombinant bacterial collagen is utilized to characterize the sequence requirement for fibronectin binding. Chimeric collagens were generated by inserting the putative fibronectin-binding region from human collagen into the bacterial collagen sequence. Insertion of a sufficient length of human sequence conferred fibronectin affinity. The minimum sequence requirement was identified as a 6-triplet sequence near the unique collagenase cleavage site and was the same in both triple-helix and denatured states. Denaturation of the chimeric collagen increased its affinity for fibronectin, as seen for mammalian collagens. The fibronectin binding recombinant collagen did not contain hydroxyproline, indicating hydroxyproline is not essential for binding. However, its absence may account, in part, for the higher affinity of the native chimeric protein and the lower affinity of the denatured protein compared with type II collagen. Megakaryocytes cultured on chimeric collagen with fibronectin affinity showed improved adhesion and differentiation, suggesting a strategy for generating bioactive materials in biomedical applications.  相似文献   

8.
The region of fibronectin (FN) surrounding the two type II modules of FN binds type I collagen. However, little is known about interactions of this collagen binding domain with other collagen types or extracellular matrix molecules. Among several expressed recombinant (r) human FN fragments from the collagen binding region of FN, only rI6-I7, which included the two type II modules and both flanking type I modules, bound any of several tested collagens. The rI6-I7 interacted specifically with both native and denatured forms of types I and III collagen as well as denatured types II, IV, V and X collagen with apparent K(d) values of 0.2-3.7 x 10(-7) M. Reduction with DTT disrupted the binding to gelatin verifying the functional requirement for intact disulfide bonds. The FN fragments showed a weak, but not physiologically important, binding to heparin, and did not bind elastin or laminin. The broad, but selective range of ligand interactions by rI6-I7 mirrored our prior observations for the collagen binding domain (rCBD) from matrix metalloproteinase-2 (MMP-2) [J. Biol. Chem. 270 (1995) 11555]. Subsequent experiments showed competition between rI6-I7 and rCBD for binding to gelatin indicating that their binding sites on this extracellular matrix molecule are identical or closely positioned. Two collagen binding domain fragments supported cell attachment by a beta1-integrin-dependent mechanism although neither protein contains an Arg-Gly-Asp recognition sequence. Furthermore, activation of MMP-2 and MMP-9 was greatly reduced for HT1080 fibrosarcoma cells cultured on either of the fibronectin fragments compared to full-length FN. These observations imply that the biological activities of FN in the extracellular matrix may involve interactions with a broad range of collagen types, and that exposure to pathologically-generated FN fragments may substantially alter cell behavior and regulation.  相似文献   

9.
The adhesion of Balb/c 3T12 cells to fibronectin (FN) and to denatured (DC) or native (NC) collagen is differentially sensitive to divalent cations and to sodium azide. Short-time adhesion (10 min) to FN requires either Mg2+ or Mn2+, whereas only Mn2+ stimulates attachment to DC and NC. Azide treatment only slightly affects adhesion of cells to FN, but strongly inhibits cell attachment to DC and NC. Attachment to any of these substrata is unaffected by monensin and by treatment of the cells with an intracellular fraction, making unlikely the possibility that molecules released by secretion or cell lysis participate in the adhesive process. Soluble collagen inhibits the adhesion of cells to DC and NC, but does not affect adhesion to FN. Finally, rabbit antiserum against collagen binding proteins inhibits cell attachment to NC and DC; the cells, however, attach normally to FN in presence of this antiserum. Taken together, our results support the view that 3T12 cells attach directly to native or denatured collagens and that FN is not required for this process.  相似文献   

10.
To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen-Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly-Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat-denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex.  相似文献   

11.
The involvement of embryonic cell surface proteoglycans in the attachment and outgrowth of cultured mouse embryos has been investigated. Several lines of evidence indicate that periimplantation stage blastocysts express heparin/heparan sulfate proteoglycans on their cell surfaces that can mediate embryo attachment and trophoblast outgrowth on a variety of matrices. First, in the presence of soluble heparin, the rate at which embryos attach and outgrow on laminin, fibronectin, or monolayers of uterine epithelial cells is reduced considerably. In the case of fibronectin, the rate of outgrowth in the presence of the heparin is slower than in the presence of the Arg-Gly-Asp-Ser-containing peptide that is recognized by a fibronectin receptor. Embryos also attach and exhibit a limited ability to outgrow on platelet factor IV, a heparin binding protein that does not possess the additional binding domains of laminin or fibronectin. Attachment on platelet factor IV is inhibited by heparin. Second, cell surface digestion of attachment-component embryos with heparinase, but not chondroitinase ABC, slows the rate of outgrowth on tissue culture plates in the presence of serum. Third, selective staining for sulfated molecules on the trophectoderm surface of periimplantation stage embryos indicates that such molecules are abundant and uniformly distributed on these cell surfaces. Last, heparin/heparan sulfate proteoglycans are detected as major cell surface components of embryos using vectorial labeling with lactoperoxidase and Na125I. Collectively, these data indicate that heparin/heparan sulfate-bearing molecules have a direct role in attachment and outgrowth of implantation stage blastocysts.  相似文献   

12.
The adhesion of human and rabbit platelets to collagens and collagen-derived fragments immobilized on plastic was investigated. Adhesion appeared to be independent of collagen conformation, since similar attachment occurred to collagen (type I) in monomeric form, as fibres or in denatured state. The adhesion of human platelets was stimulated to a variable degree by Mg2+, but rabbit platelet adhesion showed little if any dependence on this cation. Collagens type I, III, V and VI were all able to support adhesion, although that to collagen type V (native) was lower than that to the other collagens. Adhesion to a series of peptides derived from collagens I and III was measured. Attachment did not require the presence of peptides in triple-helical configuration. The extent of adhesion ranged from relatively high, as good as to the intact parent collagen molecule, to little if any adhesive activity beyond the non-specific (background) level. The existence of very different degrees of activity suggests that platelet adhesion is associated with specific structural sites in the collagen molecule. Adhesion in many instances was essentially in accord with the known platelet-aggregatory activity of individual peptides. However, two peptides, alpha 1(I)CB3 and alpha 1(III)CB1,8,10,2, exhibited good adhesive activity although possessing little if any aggregatory activity. Of particular interest, despite its near-total lack of aggregatory activity, adhesion to peptide alpha 1(I)CB3 was as good as that to the structurally homologous peptide alpha 1(III)CB4, in which is located a highly reactive aggregatory site. This implies that platelet adhesion to collagen may involve sites in the collagen molecule distinct from those more directly associated with aggregation.  相似文献   

13.
Antibodies to a rat liver membrane glycoprotein with an Mr of 115,000 (nonreduced) inhibited the attachment of rat hepatocytes and primary rat heart fibroblasts to both collagen and fibronectin. The Mr 115,000 glycoprotein cross-reacted immunologically with the beta 1-chain of the rat hepatocyte fibronectin receptor (HFNR), and the two proteins showed identical peptide maps after proteolytic cleavage. It was concluded that the Mr 115,000 protein was similar or identical to the beta 1-chain of Arg-Gly-Asp (RGD)-directed matrix receptors. Although collagen type I contains several RGD sequences, the attachment of hepatocytes and fibroblasts to collagen type I was not inhibited by the synthetic peptide GRGDTP in concentrations that blocked adhesion to fibronectin. Furthermore, hepatocytes adhered equally well to collagen fragments, generated by cyanogen bromide cleavage, lacking RGD sequences as to fragments containing this sequence. Antibodies to the Mr 115,000 protein inhibited the adhesion of hepatocytes to both types of collagen fragments. Taken together, these data indicate the presence of collagen receptors that share the beta-subunit with the HFNR but that are not directed to RGD sequences. Tentative alpha-chains of the collagen matrix receptor complex were isolated by immunoprecipitation of surface 125I-labeled fibroblast membrane proteins purified by affinity chromatography on immobilized collagen type I. Data are presented indicating that proteins with Mr around 145,000 and 170,000 (nonreduced) are associated in noncovalently linked complexes with the Mr 115,000 protein. These complexes have affinity for collagen and thus have properties expected for integrin-like collagen receptors.  相似文献   

14.
Extracellular matrix molecules are generally categorized as collagens, elastin, proteoglycans, or other noncollagenous structural/cell interaction proteins. Many of these extracellular proteins contain distinctive repetitive modules, which can sometimes be found in other proteins. We describe the complete primary structure of an alpha 1 chain of type XII collagen from chick embryonic fibroblasts. This large, structurally chimeric molecule identified by cDNA analysis combines previously unrelated molecular domains into a single large protein 3,124 residues long (approximately 340 kD). The deduced chicken type XII collagen sequence starts at the amino terminus with one unit of the type III motif of fibronectin, which is followed by one unit homologous to the von Willebrand factor A domain, then one more fibronectin type III module, a second A domain from von Willebrand factor, 6 units of type III motif and a third A domain, 10 consecutive units of type III motif and a fourth A domain, a domain homologous to the NC4 domain peptide of type IX collagen, and finally two short collagenous regions previously described as part of the partially sequenced collagen type XII molecule; an Arg-Gly-Asp potential cell adhesive recognition sequence is present in a hydrophilic region at the terminus of one collagenous domain. Antibodies raised to type XII collagen synthesized in a bacterial expression system recognized not only previously reported bands (220 kD et cetera) in tendons, but also bands with apparently different molecular sizes in fibroblasts and 4-d embryos. The antibodies stained a wide variety of extracellular matrices in embryos in patterns distinct from those of fibronectin or interstitial collagens. They prominently stained extracellular matrix associated with certain neuronal tissues, such as axons from dorsal root ganglia and neural tube. These studies identify a novel chimeric type of molecule that contains both adhesion molecule and collagen motifs in one protein. Its structure blurs current classification schemes for extracellular proteins and underscores the potentially large diversity possible in these molecules.  相似文献   

15.
The extracellular matrix (ECM) provides structural support to cells and tissues and is involved in the regulation of various essential physiological processes, including neurite outgrowth. Most of the adhesive interactions between cells and ECM proteins are mediated by integrins. Integrins typically recognize short linear amino acid sequences in ECM proteins, one of the most common being Arginine-Glycine-Aspartate (RGD). The present study investigated neurite outgrowth and adhesion of identified molluscan neurons on a selection of substrates in vitro. Involvement of RGD binding sites in adhesion to the different substrates was investigated using soluble synthetic RGD peptides. The cells adhered to native (i.e., nondenatured) laminin and type IV collagen, but not to native plasma fibronectin. Denaturation of fibronectin dramatically enhanced cell adhesion. Only the adhesion to denatured fibronectin was inhibited by RGD peptides, indicating that denaturation uncovers a RGD binding site in the protein. Laminin as well as denatured fibronectin, but not type IV collagen, induced neurite outgrowth from a percentage of the RPA neurons. These results demonstrate that molluscan neurons can attach to various substrates using both RGD-dependent and RGD-independent adhesion mechanisms. This suggests that at least two different cell adhesion receptors, possibly belonging to the integrin family, are expressed in these neurons. Moreover, the results show that vertebrate ECM proteins can induce outgrowth from these neurons, suggesting that the mechanisms involved in adhesion as well as outgrowth promoting are evolutionarily well conserved. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 37–52, 1998  相似文献   

16.
The adhesion of HT29 human colon adenocarcinoma cells to different extracellular matrix components was studied. While treatment of the cells with sialidase had no detectable effect on binding to laminin and fibronectin, attachment to collagen IV was decreased. However, additional removal of beta-(1-4)-bound galactose led to significantly reduced binding to all of the substrates, including fibronectin and laminin. Tunicamycin treatment, monitored by lectin-induced aggregation, drastically diminished cell adhesion to laminin and fibronectin, whereas cell binding to collagen IV was not affected. Arg-Gly-Asp (RGD)-related peptides were used to study the adhesion to collagen IV. The results show that a serine-containing RGD-related peptide GRGDSP has virtually no effect on colon carcinoma cell adhesion to type IV collagen. In contrast, when serine was substituted for threonine (GRGDTP) adhesion to collagen IV was strongly inhibited. After incubation of sialidase-treated cells with the threonine-containing peptide adhesion was almost totally blocked. These results demonstrate the existence of both RGD-dependent and carbohydrate-based mechanisms for metastatic human HT29 cell binding to collagen IV.  相似文献   

17.
Amino acid residues 140-164 of integrin beta1 comprise an Arg-Gly-Asp (RGD) cross-linking region. The present study was undertaken to study the role of the RGD cross-linking region of integrin beta1 subunit in embryo implantation. Decidual cells attached to fibronectin (FN)-coated dishes. A peptide corresponding to integrin beta1[140-164] (DDL; DYPIDLYYLMDLSYSMKDDLENVKS) inhibited decidual cell attachment to FN-coated dishes in a dose-dependent manner. A variant integrin peptide in which Asp 157 and Asp 158 were replaced by Ala (AAL; DYPIDLYYLMDLSYSMKAALENVKS) did not affect decidual cell attachment to FN. Inhibition by DDL peptide was reversed by prior treatment with an RGD-containing peptide but not by prior treatment with an RGE-containing peptide. Mouse blastocysts became attached to cultured human decidual cells after embryos hatched from the zona pellucida. The majority of hatched blastocysts attached to human decidual cells within 24 h of culture. Blastocysts that attached to decidual cells exhibited extensive outgrowth after 48 h. Treatment of decidual cells with synthetic peptides did not affect the rates of hatching and attachment of blastocysts. The outgrowth of embryos on decidual cells was inhibited by DDL peptide in a dose-dependent manner, but not by AAL peptide. These findings suggest that integrin beta1[140-164] on decidual cells may be important in embryonic development and differentiation following attachment.  相似文献   

18.
Type VI collagen is a component of 100 nm long periodic filaments with a widespread distribution around collagen fibers and on the surface of cells. It is an unusual collagen constituted by three distinct chains, one of which (alpha 3) is much larger than the others and is encoded by a 9-kb mRNA. The amino acid sequence of the alpha 3(VI) deduced from the present cDNA clones specifies for a multidomain protein of at least 2648 residues made of a short collagenous sequence (336 residues), flanked at the N-terminus by nine 200 residue long repeating motifs and at the C-terminus by two similar motifs that share extensive identities with the collagen-binding type A repeats of von Willebrand factor. Type VI collagen and alpha 3(VI) fusion proteins bound to insolubilized type I collagen in a specific, time-dependent, and saturable manner. The alpha 3(VI) chain has three Arg-Gly-Asp sequences in the collagenous domain, and cell attachment was stimulated by the triple helix of type VI collagen and by alpha 3(VI) fusion proteins containing Arg-Gly-Asp sequences. This function was specifically inhibited by the Arg-Gly-Asp-Ser synthetic peptide. The type I collagen-binding and the cell-attachment properties of the alpha 3(VI) chain provide direct information for the role of type VI collagen in connective tissues.  相似文献   

19.
The macrophage mannose receptor is the prototype for a family of receptors each having an extracellular region consisting of an N-terminal cysteine-rich domain related to the R-type carbohydrate-recognition domain of ricin, a fibronectin type II domain and eight to ten domains related to C-type carbohydrate-recognition domains. The mannose receptor acts as a molecular scavenger, clearing harmful glycoconjugates or micro-organisms through recognition of their defining carbohydrate structures. Cell-adhesion assays, as well as collagen-binding assays, have now been used to show that the mannose receptor can also bind collagen and that the fibronectin type II domain mediates this activity. Neither of the two types of sugar-binding domain in the receptor is involved in collagen binding. Fibroblasts expressing the mannose receptor adhere to type I, type III and type IV collagens, but not to type V collagen, and the adherence is inhibited by isolated mannose receptor fibronectin type II domain. The fibronectin type II domain shows the same specificity for collagen as the whole receptor, binding to type I, type III and type IV collagens. This is the first activity assigned to the fibronectin type II domain of the mannose receptor. The results suggest additional roles for this multifunctional receptor in mediating collagen clearance or cell-matrix adhesion.  相似文献   

20.
H Munakata  K Takagaki  M Majima  M Endo 《Glycobiology》1999,9(10):1023-1027
The interactions of glycosaminoglycans with collagens and other glycoproteins in extracellular matrix play important roles in cell adhesion and extracellular matrix assembly. In order to clarify the chemical bases for these interactions, glycosaminoglycan solutions were injected onto sensor surfaces on which collagens, fibronectin, laminin, and vitronectin were immobilized. Heparin bound to type V collagen, type IX collagen, fibronectin, laminin, and vitronectin; and chondroitin sulfate E bound to type II, type V, and type VII collagen. Heparin showed a higher affinity for type IX collagen than for type V collagen. On the other hand, chondroitin sulfate E showed the highest affinity for type V collagen. The binding of chondroitin sulfate E to type V collagen showed higher affinity than that of heparin to type V collagen. These data suggest that a novel characteristic sequence included in chondroitin sulfate E is involved in binding to type V collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号