首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
Exosomes are secreted, single membrane organelles of approximately 100 nm diameter. Their biogenesis is typically thought to occur in a two-step process involving (1) outward vesicle budding at limiting membranes of endosomes (outward = away from the cytoplasm), which generates intralumenal vesicles, followed by (2) endosome-plasma membrane fusion, which releases these internal vesicles into the extracellular milieu as exosomes. In this study, we present evidence that certain cells, including Jurkat T cells, possess discrete domains of plasma membrane that are enriched for exosomal and endosomal proteins, retain the endosomal property of outward vesicle budding, and serve as sites of immediate exosome biogenesis. It has been hypothesized that retroviruses utilize the exosome biogenesis pathway for the formation of infectious particles. In support of this, we find that Jurkat T cells direct the key budding factor of HIV, HIV Gag, to these endosome-like domains of plasma membrane and secrete HIV Gag from the cell in exosomes.  相似文献   

2.
The ESCRT pathway mediates membrane remodeling during enveloped virus budding, cytokinesis, and intralumenal endosomal vesicle formation. Late in the pathway, a subset of membrane-associated ESCRT-III proteins display terminal amphipathic "MIM1" helices that bind and recruit VPS4 ATPases via their MIT domains. We now report that VPS4 MIT domains also bind a second, "MIM2" motif found in a different subset of ESCRT-III subunits. The solution structure of the VPS4 MIT-CHMP6 MIM2 complex revealed that MIM2 elements bind in extended conformations along the groove between the first and third helices of the MIT domain. Mutations that block VPS4 MIT-MIM2 interactions inhibit VPS4 recruitment, lysosomal protein targeting, and HIV-1 budding. MIT-MIM2 interactions appear to be common throughout the ESCRT pathway and possibly elsewhere, and we suggest how these interactions could contribute to a mechanism in which VPS4 and ESCRT-III proteins function together to constrict the necks of budding vesicles.  相似文献   

3.
The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT) directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.  相似文献   

4.
Immunoisolation techniques have led to the purification of apical and basolateral transport vesicles that mediate the delivery of proteins from the trans-Golgi network to the two plasma membrane domains of MDCK cells. We showed previously that these transport vesicles can be formed and released in the presence of ATP from mechanically perforated cells (Bennett, M. K., A. Wandinger-Ness, and K. Simons, 1988. EMBO (Euro. Mol. Biol. Organ.) J. 7:4075-4085). Using virally infected cells, we have monitored the purification of the trans-Golgi derived vesicles by following influenza hemagglutinin or vesicular stomatitis virus (VSV) G protein as apical and basolateral markers, respectively. Equilibrium density gradient centrifugation revealed that hemagglutinin containing vesicles had a slightly lower density than those containing VSV-G protein, indicating that the two fractions were distinct. Antibodies directed against the cytoplasmically exposed domains of the viral spike glycoproteins permitted the resolution of apical and basolateral vesicle fractions. The immunoisolated vesicles contained a subset of the proteins present in the starting fraction. Many of the proteins were sialylated as expected for proteins existing the trans-Golgi network. The two populations of vesicles contained a number of proteins in common, as well as components which were enriched up to 38-fold in one fraction relative to the other. Among the unique components, a number of transmembrane proteins could be identified using Triton X-114 phase partitioning. This work provides evidence that two distinct classes of vesicles are responsible for apical and basolateral protein delivery. Common protein components are suggested to be involved in vesicle budding and fusion steps, while unique components may be required for specific recognition events such as those involved in protein sorting and vesicle targeting.  相似文献   

5.
The rate-limiting step in the transit of absorbed dietary fat across the enterocyte is the generation of the pre-chylomicron transport vesicle (PCTV) from the endoplasmic reticulum (ER). This vesicle does not require coatomer-II (COPII) proteins for budding from the ER membrane and contains vesicle-associated membrane protein 7, found in intestinal ER, which is a unique intracellular location for this SNARE protein. We wished to identify the protein(s) responsible for budding this vesicle from ER membranes in the absence of the requirement for COPII proteins. We chromatographed rat intestinal cytosol on Sephacryl S-100 and found that PCTV budding activity appeared in the low molecular weight fractions. Additional chromatographic steps produced a single major and several minor bands on SDS-PAGE. By tandem mass spectroscopy, the bands contained both liver and intestinal fatty acid-binding proteins (L- and I-FABP) as well as four other proteins. Recombinant proteins for each of the six proteins identified were tested for PCTV budding activity; only L-FABP and I-FABP (23% the activity of L-FABP) were active. The vesicles generated by L-FABP were sealed, contained apolipoproteins B48 and AIV, were of the same size as PCTV on Sepharose CL-6B, and by electron microscopy, excluded calnexin and calreticulin but did not fuse with cis-Golgi nor did L-FABP generate COPII-dependent vesicles. Gene-disrupted L-FABP mouse cytosol had 60% the activity of wild type mouse cytosol. We conclude that L-FABP can select cargo for and bud PCTV from intestinal ER membranes.  相似文献   

6.
Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have comparable effects on lipid membranes, but this has not been shown directly. Here, we find that α-synuclein, β-synuclein, and apolipoprotein A-1 have the conserved functional ability to induce membrane curvature and to convert large vesicles into highly curved membrane tubules and vesicles. The resulting structures are morphologically similar to those generated by amphiphysin, a curvature-inducing protein involved in endocytosis. Unlike amphiphysin, however, synucleins and apolipoproteins do not require any scaffolding domains and curvature induction is mediated by the membrane insertion and wedging of amphipathic helices alone. Moreover, we frequently observed that α-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that α-synuclein plays a role in vesicle trafficking and enhances endocytosis. Induction of membrane curvature must be under strict regulation in vivo; however, as we find it can also cause disruption of membrane integrity. Because the degree of membrane curvature induction depends on the concerted action of multiple proteins, controlling the local protein density of tubulating proteins may be important. How cellular safeguarding mechanisms prevent such potentially toxic events and whether they go awry in disease remains to be determined.  相似文献   

7.
Synaptic vesicles are made locally in the nerve terminal during recycling of membrane. Synaptic vesicle proteins must be sorted and concentrated on the plasma membrane, packaged into a budding vesicle of precise size and cut away from the synaptic surface. Adaptors, scaffolds, BAR-domain and ENTH-domain proteins all must be coordinated to carry out this sequence of events prior to the action of dynamin. Details of how this is orchestrated at nerve terminals are just beginning to emerge.  相似文献   

8.
The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydrolysis of acyl-CoA lipid esters. The mechanisms by which these lipid esters are directed to the appropriate membranes in vivo, and their precise roles in vesicle biogenesis, are not yet understood. Here, we present the first report on membrane associated ACBP domain-containing protein-1 (MAA-1), a novel membrane-associated member of the acyl-CoA-binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA-dependent process during vesicle formation.  相似文献   

9.
Retroviral Gag proteins direct the assembly and release of virus particles from the plasma membrane. The budding machinery consists of three small domains, the M (membrane-binding), I (interaction), and L (late or "pinching-off") domains. In addition, Gag proteins contain sequences that control particle size. For Rous sarcoma virus (RSV), the size determinant maps to the capsid (CA)-spacer peptide (SP) sequence, but it functions only when I domains are present to enable particles of normal density to be produced. Small deletions throughout the CA-SP sequence result in the release of particles that are very large and heterogeneous, even when I domains are present. In this report, we show that particles of relatively uniform size and normal density are released by budding when the size determinant and I domains in RSV Gag are replaced with capsid proteins from two unrelated, nonenveloped viruses: simian virus 40 and satellite tobacco mosaic virus. These results indicate that capsid proteins of nonenveloped viruses can interact among themselves within the context of Gag and be inserted into the retroviral budding pathway merely by attaching the M and L domains to their amino termini. Thus, the differences in the assembly pathways of enveloped and nonenveloped viruses may be far simpler than previously thought.  相似文献   

10.
Highly curved cell membrane structures, such as plasmalemmal vesicles (caveolae) and clathrin-coated pits, facilitate many cell functions, including the clustering of membrane receptors and transport of specific extracellular macromolecules by endothelial cells. These structures are subject to large mechanical deformations when the plasma membrane is stretched and subject to a change of its curvature. To enhance our understanding of plasmalemmal vesicles we need to improve the understanding of the mechanics in regions of high membrane curvatures. We examine here, theoretically, the shapes of plasmalemmal vesicles assuming that they consist of three membrane domains: an inner domain with high curvature, an outer domain with moderate curvature, and an outermost flat domain, all in the unstressed state. We assume the membrane properties are the same in these domains with membrane bending elasticity as well as in-plane shear elasticity. Special emphasis is placed on the effects of membrane curvature and in-plane shear elasticity on the mechanics of vesicle during unfolding by application of membrane tension. The vesicle shapes were computed by minimization of bending and in-plane shear strain energy. Mechanically stable vesicles were identified with characteristic membrane necks. Upon stretch of the membrane, the vesicle necks disappeared relatively abruptly leading to membrane shapes that consist of curved indentations. While the resting shape of vesicles is predominantly affected by the membrane spontaneous curvatures, the membrane shear elasticity (for a range of values recorded in the red cell membrane) makes a significant contribution as the vesicle is subject to stretch and unfolding. The membrane tension required to unfold the vesicle is sensitive with respect to its shape, especially as the vesicle becomes fully unfolded and approaches a relative flat shape.  相似文献   

11.
The large GTPase dynamin is required for budding of clathrin-coated vesicles from the plasma membrane, after which the clathrin coat is removed by the chaperone Hsc70 and its cochaperone auxilin. Recent evidence suggests that the GTP-bound form of dynamin may recruit factors that execute the fission reaction. Here, we show that dynamin:GTP binds to Hsc70 and auxilin. We mapped two domains within auxilin that interact with dynamin, and these domains inhibit endocytosis when overexpressed in HeLa cells or when added in a permeable cell assay. The inhibition is not due to impairment of clathrin uncoating or to altered clathrin distribution in cells. Thus, in addition to its requirement for clathrin uncoating, our results show that auxilin also acts during the early steps of clathrin-coated vesicle formation. The data suggest that dynamin regulates the action of molecular chaperones in vesicle budding during endocytosis.  相似文献   

12.
《The Journal of cell biology》1996,133(6):1237-1250
Strong evidence implicates clathrin-coated vesicles and endosome-like vacuoles in the reformation of synaptic vesicles after exocytosis, and it is generally assumed that these vacuoles represent a traffic station downstream from clathrin-coated vesicles. To gain insight into the mechanisms of synaptic vesicle budding from endosome-like intermediates, lysed nerve terminals and nerve terminal membrane subfractions were examined by EM after incubations with GTP gamma S. Numerous clathrin-coated budding intermediates that were positive for AP2 and AP180 immunoreactivity and often collared by a dynamin ring were seen. These were present not only on the plasma membrane (Takei, K., P.S. McPherson, S.L.Schmid, and P. De Camilli. 1995. Nature (Lond.). 374:186-190), but also on internal vacuoles. The lumen of these vacuoles retained extracellular tracers and was therefore functionally segregated from the extracellular medium, although narrow connections between their membranes and the plasmalemma were sometimes visible by serial sectioning. Similar observations were made in intact cultured hippocampal neurons exposed to high K+ stimulation. Coated vesicle buds were generally in the same size range of synaptic vesicles and positive for the synaptic vesicle protein synaptotagmin. Based on these results, we suggest that endosome-like intermediates of nerve terminals originate by bulk uptake of the plasma membrane and that clathrin- and dynamin-mediated budding takes place in parallel from the plasmalemma and from these internal membranes. We propose a synaptic vesicle recycling model that involves a single vesicle budding step mediated by clathrin and dynamin.  相似文献   

13.
The cellular endosomal sorting complex required for transport (ESCRT) machinery participates in membrane scission and cytoplasmic budding of many RNA viruses. Here, we found that expression of dominant negative ESCRT proteins caused a blockade of Epstein-Barr virus (EBV) release and retention of viral BFRF1 at the nuclear envelope. The ESCRT adaptor protein Alix was redistributed and partially colocalized with BFRF1 at the nuclear rim of virus replicating cells. Following transient transfection, BFRF1 associated with ESCRT proteins, reorganized the nuclear membrane and induced perinuclear vesicle formation. Multiple domains within BFRF1 mediated vesicle formation and Alix recruitment, whereas both Bro and PRR domains of Alix interacted with BFRF1. Inhibition of ESCRT machinery abolished BFRF1-induced vesicle formation, leading to the accumulation of viral DNA and capsid proteins in the nucleus of EBV-replicating cells. Overall, data here suggest that BFRF1 recruits the ESCRT components to modulate nuclear envelope for the nuclear egress of EBV.  相似文献   

14.
真核细胞内膜泡运输的分子机制   总被引:1,自引:0,他引:1  
真核细胞内一些蛋白质需靠膜泡进行定向运输,膜泡是在外衣蛋白的作用下形成的,根据外衣蛋白的不同,膜泡分为笼蛋白,COPⅠ和COPⅡ外衣膜泡,这些外衣膜泡分别在细胞内不同供膜(donor membrane)处形成,因为被运输蛋白具有分选信号可与供膜上相应的受体结合,所以能被包裹在特异的膜泡之中,在膜泡形成过程中,外衣蛋白在“芽生”膜泡的细胞质侧组装成笼状外衣,帮助“芽生”膜泡从供膜处脱落,一旦笼状外衣膜泡脱离供膜,笼状外衣蛋白便发生解聚而成为无衣膜泡,无衣膜泡在Rab蛋白的调控下可定向运输蛋白质,而解聚后的外衣蛋白可重新介导新的外衣膜泡形成。  相似文献   

15.
Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission.  相似文献   

16.
Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and β2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.  相似文献   

17.
MFG-E8 (milk fat globule-EGF factor 8) is a peripheral membrane glycoprotein, which is expressed abundantly in lactating mammary glands and is secreted in association with fat globules. This protein consists of two-repeated EGF-like domains, a mucin-like domain and two-repeated discoidin-like domains (C-domains), and contains an integrin-binding motif (RGD sequence) in the EGF-like domain. To clarify the role of each domain on the peripheral association with the cell membrane, several domain-deletion mutants of MFG-E8 were expressed in COS-7 cells. The immunofluorescent staining of intracellular and cell-surface proteins and biochemical analyses of cell-surface-biotinylated and secreted proteins demonstrated that both of the two C-domains were required for the membrane association. During the course of these studies for domain functions, MFG-E8, but not C-domain deletion mutants, was shown to be secreted as membrane vesicle complexes. By size-exclusion chromatography and ultracentrifugation analyses, the complexes were characterized to have a high-molecular mass, low density and higher sedimentation velocity and to be detergent-sensitive. Not only such a exogenously expressed MFG-E8 but also that endogenously expressed in a mammary epithelial cell line, COMMA-1D, was secreted as the membrane vesicle-like complex. Scanning electron microscopic analyses revealed that MFG-E8 was secreted into the culture medium in association with small membrane vesicles with a size from 100 to 200 nm in diameter. Furthermore, the expression of MFG-E8 increased the number of these membrane vesicle secreted into the culture medium. These results suggest a possible role of MFG-E8 in the membrane vesicle secretion, such as budding or shedding of plasma membrane (microvesicles) and exocytosis of endocytic multivesicular bodies (exosomes).  相似文献   

18.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

19.
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cells septin 2 (SEPT2) fibers colocalize with a subset of microtubule tracks composed of polyglutamylated (polyGlu) tubulin, and that vesicles containing apical or basolateral proteins exit the TGN along these SEPT2/polyGlu microtubule tracks. Tubulin-associated SEPT2 facilitates vesicle transport by maintaining polyGlu microtubule tracks and impeding tubulin binding of microtubule-associated protein 4 (MAP4). Significantly, this regulatory step is required for polarized, columnar-shaped epithelia biogenesis; upon SEPT2 depletion, cells become short and fibroblast-shaped due to intracellular accumulation of apical and basolateral membrane proteins, and loss of vertically oriented polyGlu microtubules. We suggest that septin coupling of the microtubule cytoskeleton to post-Golgi vesicle transport is required for the morphogenesis of polarized epithelia.  相似文献   

20.
The matrix (M) protein of rhabdoviruses has been shown to play a key role in virus assembly and budding; however, the precise mechanism by which M mediates these processes remains unclear. We have associated a highly conserved, proline-rich motif (PPxY or PY motif, where P denotes proline, Y represents tyrosine, and x denotes any amino acid) of rhabdoviral M proteins with a possible role in budding mediated by the M protein. Point mutations that disrupt the PY motif of the M protein of vesicular stomatitis virus (VSV) have no obvious effect on membrane localization of M but instead lead to a decrease in the amount of M protein released from cells in a functional budding assay. Interestingly, the PPxY sequence within rhabdoviral M proteins is identical to that of the ligand which interacts with WW domains of cellular proteins. Indeed, results from two in vitro binding assays demonstrate that amino acids 17 through 33 and 29 through 44, which contain the PY motifs of VSV and rabies virus M proteins, respectively, mediate interactions with WW domains of specific cellular proteins. Point mutations that disrupt the consensus PY motif of VSV or rabies virus M protein result in a significant decrease in their ability to interact with the WW domains. These properties of the PY motif of rhabdovirus M proteins are strikingly analogous to those of the late (L) budding domain identified in the gag-specific protein p2b of Rous sarcoma virus. Thus, it is possible that rhabdoviruses may usurp host proteins to facilitate the budding process and that late stages in the budding process of rhabdoviruses and retroviruses may have features in common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号