首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential development of sinks that depend on a common resourcepool has been viewed as a consequence of an autocatalytic feedbackprocess of flow of resource units into them. The feed-back processimplies that the stronger a sink is relative to its competitors,the greater is its probability of getting further resourcesas a non-linear function of its resource drawing ability andsink size. We show that this model contrasts with that of thesink-strength dependent model in its prediction of the subsequentdevelopment of the initial asymmetry of growing leaves whentheir resource drawing ability is enhanced. By artificiallyenhancing the resource drawing ability of the leaves of Mestha(Hibiscus cannabinus L.) by external application of growth regulators,we test these predictions and show that the results are in conformitywith the autocatalytic model proposed by Ganeshaiah and UmaShaanker.Copyright 1995, 1999 Academic Press Autocatalytic growth, resource flow, leaf asymmetry, sink-strength, self-organization, Hibiscus cannabinus (L.)  相似文献   

2.
In Chamaecrista fasciculata, fruit abortion levels are high and seed mass is highly variable, necessary preconditions for differential resource allocation of the female to seed and fruit sired by different males. This study investigated the relative role of pollen donor and seed parent on the allocation of resouces to developing seed and fruit, and assessed the role of genetic relatedness in contributing to any observed paternal effect in C. fasciculata. In addition, pollen donor effects were contrasted to within-seed parent sources of variation in resource allocation due to pollination date and ovule position in the pod. Plants collected from the field were brought to a greenhouse where single-donor crosses were conducted controlling for pollen donor source and interplant distance, a measure of genetic relatedness. Seed mass, number of seed/fruit, fruit maturation time, and fruit abortion rate were measured as indicators of resource allocation to developing seed and fruit. Variation in resource allocation was largely determined by the seed parent. Pollen donor effects were limited to differences between self vs. non-self pollinations, suggesting that inbreeding depression following mating events between related individuals is the source of any variation among pollen donors on differential resource allocation to developing seed and fruit. Once the effect of inbreeding was removed, however, pollination date and ovule position played larger roles than pollen source. Since there was no detectable variation among male pollen donors in their ability to accrue resources from the female seed parent apart from inbreeding effects, it is concluded that the opportunity for postzygotic mate choice is limited in C. fasciculata.  相似文献   

3.
Transgenic tobacco (Nicotiana tabacum L, cv. SR-1) expressing mannitol 1-phosphate dehydrogenase, MTLD, in chloroplasts and myo-inositol O-methyltransferase, IMT1, in the cytosol after crossing of lines which expressed these foreign genes separately has been analysed. Plants expressing both enzymes accumulated mannitol and D-ononitol in amounts comparable to those following single gene transfer and showed phenotypically normal growth during the vegetative stage. Induction of flowering for transgenovar and wild-type occurred at the same time, but during flowering the phenotype of the transformed plants changed. Compared to wild-type, transgenic plants were characterized by curled, smaller upper leaves and elongated stems during flowering; incomplete development of flower buds with shorter sepals and pedicels resulted in increased abortion. Flowers completing development were normal. The vegetative biomass of the transformed plants was slightly higher than that of wild-type. Concentrations of soluble sugars and potassium were lower than in wild-type only in the apical parts of the transgenic plants. Both enzymes, under control of the CaMV 35S promoter, promoted accumulation of mannitol and D-ononitol in the youngest leaves close to the vegetative meristem and in flowers, suggesting that their presence could signal lower sink demand leading to a decrease in carbon import to flowers and developing seed capsules. The interpretation here is that increases of inert carbohydrates in developing sinks interfere with metabolism, such as respiration or glycolysis. This interference may be less significant in source tissues during vegetative growth than in sink tissues during seed development.  相似文献   

4.
Resource and pollen limitation, as well as pollen/ovule incompatibility, have been proposed as causes to explain fruit abortion. To assess whether abortion in Opuntia microdasys was due to resource and/or pollen limitation and could therefore be reversed fruit set and seed set were studied using controlled pollination experiments on 60 plants that had been randomly assigned a combination of watering and fertilization treatments. On the other hand, to test whether fruit abortion was irreversible, due to pollen/ovule incompatibility, we examined the reproductive biology of the species. This included observations on floral phenology, nectar production, flower visitors, numbers of pollen grains and ovules, and self-pollination experiments. Results showed that O. microdasys is a fully self-incompatible species and its floral biology and the activity of the main pollinator allow constant deposition of incompatible pollen onto stigmas, which may contribute to fruit abortion. Reproductive success was limited by nutrients and pollen, but the fruit set increased only by 58%, compared to 47% of the control, after the experimental addition of pollen, nutrients and water. The magnitude of pollen and resource limitation suggests that similar levels of abortion will be present in good as well as in bad years. Selfing as well as incompatibility between ramets from the same clone and between closely related plants seem plausible candidates to explain the large proportion of fruit abortion, and experimental cross pollination between genotypes identified through molecular markers are necessary to fully understand the considerable abortion rate that remains unexplained after pollen and resource addition. Interestingly, the possible reason why the abortion of energetically expensive fruits has not been eliminated by natural selection is that the aborted fruits are propagules able to root and produce new plants with the same genotype of the mother. Abortion would have a dramatic effect on cross-fertilized genotypes because they result in zero fitness, but it would have a positive effect on the fitness of the maternal genotype because a clonal offspring is produced. Evidently, the exact fitness consequences to the maternal plant will depend on the differences in survival and reproduction of these different offspring types.  相似文献   

5.
Toshihiko Sato 《Oikos》2000,88(2):309-318
The effects of two phenological constraints in resource investment to reproduction – resource limitation at the flowering stage and unpredictability of resources gained after flowering – on the resource allocation between male and female functions in monocarpic plants are considered using the ESS (evolutionarily stable strategy) approach. The model predicts that the sex allocation including the seed maturation stage has a female bias, when the quantity of reproductive resources available at flowering is small compared with that which is obtained after flowering, or when the cost of seed maturation relative to ovule production is low. The fluctuation of the quantity of resources available for seed maturation favors overproduction of ovules. As a result, more resources are allocated to female function and less to male function at flowering. The ESS allocation depends on the variability of resources and the cost of seed maturation relative to ovule production. The probability that total resource allocation has a female bias becomes higher than 0.5, and it depends on the cost of seed maturation relative to ovule production rather than resource variability. On the other hand, the probability that resource allocation has a female bias decreases with resource variability if we assume that the floral sex ratio is fixed. Future studies of plant sex allocation would profit by taking account of the phenological process of reproduction such as ovule production or seed maturation.  相似文献   

6.
In this study, I analyzed time-course of embryo abortion, positional bias in seed maturation and maternal costs of seed packaging in Cercis canadensis. While basal embryos experience similar rates of abortion as those in other positions during the first week of development, abortion rates peak during the second week. Head start in resource sequestration by stigmatic embryos may explain high rates of basal embryo abortion. Similar seed packaging costs and seed mass for single and multi-seeded pods suggests that maternal parent regulates pod size in accordance with seed numbers per pod investing equally in the surviving offspring. Competition during early developmental period results in the abortion of less competitive embryos allowing for optimal resource investment.  相似文献   

7.
Two animal-pollinated hermaphrodite plants, Pedicularis siphonantha and P. longiflora , have been used to investigate factors limiting seed production in natural populations. To evaluate the potential seed abortion due to resources limitation, seed development has been observed and seed count conducted twice. Seed production per capsule has been compared when flowers have been removed and in a control group. Open pollination has been investigated and pollen supplementation undertaken to estimate the possibility of pollen limitation. Results show that seed abortion is frequent. Stigmatic pollen load is significantly higher than ovule number per ovary under open pollination for both species. Additional self and outcross pollen did not affect seed production. Flower removal significantly increases seed production per capsule, which indicates that seed production of the studied species is limited by available resources. To detect differences in seed production between flowers pollinated by self and outcross pollen, hand pollination of bagged flowers has also been conducted in natural populations of the two Pedicularis species. Compared with open pollination, hand-pollinating self-pollen decreases, while outcross pollen increases seed production per capsule. Such results suggest that inbreeding depression in the two self-compatible species may also result in partial seed abortion under open pollination if mixed pollen is deposited on the stigma. Our results also suggest that pollen interference plays an important role in low female fertility in the two Pedicularis species.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 83–89.  相似文献   

8.
Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.  相似文献   

9.
The evolution of endosperm, the tissue that nourishes developing embryos, has remained an enigma owing to its unique genetic composition. Because it contains both maternal (generally 2 doses) and paternal (1 dose) genomes, it is suggested to have evolved as a compromising tissue between the evolutionary interests of the maternal parent and offspring over resource allocation. This argument implies that in species where endosperm is highly functional and persistent, it quenches competition among developing embryos for resources and facilitates an equitable resource allocation to the developing offspring. Based on this argument we predict the association of well developed endosperm with certain features of fruits such as high ovule number per ovary and low extent of seed abortion. In this paper, we provide evidence in support of these predictions by analysing the data from 1131 species from the Flora of Presidency of Madras. We show that persistent and functional endosperm is more frequent in multiovulated than in uniovulated species and in species with less seed abortion. Our results also suggest that species with well developed endosperm tend to have uni-carpelled ovaries. Our analyses show that these associations are less likely to be emerging due to phylogenetic constraints. We argue that the endosperm has evolved as a maternal strategy of quenching the extent of sibling rivalry.  相似文献   

10.
In seed crops of Lolium perenne, yield may be reduced by competition for a limited assimilate supply from sinks other than the ear. This study was undertaken to evaluate the priorities for allocation of assimilate within the crop from all photosynthetic sites on the main reproductive tiller after anthesis. Ear, stem and leaves were fed with 14CO2 on two occasions; the assimilatory efficiency of these sources and the magnitude and pattern of 14C-assimilate export from each was determined. The growth of each part of the main tiller and subtending tillers was also measured. Stem elongation apparently dominated the current assimilate resource and the ear did not become a net importer of assimilate until this process had ceased. Assimilate allocation to the tillers was high throughout. The nature of any competition between these sinks is discussed. When crop growth was contrasted with that in a previous year, environmental factors were implicated as determinants of priority for assimilate allocation to each sink. Sources of carbon for seed filling are also discussed as is the relevance of these findings to seed crop management.  相似文献   

11.
Stem carbohydrate reserves, in ryegrass grown for seed, mayplay a vital role in maintaining seed growth, especially underconditions of limited photosynthesis. Little is known concerningthe processes controlling stem carbohydrate utilization andpartitioning in ryegrass with respect to seed growth. The objectiveof this investigation was to determine detailed post-anthesischanges in stem and spikelet carbohydrates as affected by modificationof source and sink strength. Source-sink relations were alteredby imposing detillering or detillering-defoliation treatmentsat anthesis. Patterns of carbohydrate distribution of the ryegrassstem were different, both among positions within the stem andwith age. Stem carbohydrates accumulated during early stagesof seed growth and then declined as seeds matured. Reducingsugars comprised only a small fraction of the stem's total watersoluble carbohydrates. Detillering induced the formation ofnew tiller sinks, thus increasing sink strength and reversingthe carbohydrate gradient from spikelet (seed) sinks to newtiller sinks. Defoliation, combined with detillering, decreasedsource strength by reducing total stem carbohydrate. In controlplants, carbohydrate levels appeared adequate to support maximumseed set, whereas conditions for reduced carbohydrate levels,resulting from detillering or detillering plus defoliation,lowered seed set. Results suggest that under conditions of limitedsource strength (e.g. reduced photosynthetic capacity), thestem plays a major role in partitioning assimilates to compensatefor sink demand. New tiller growth during the period of seeddevelopment may out-compete seeds for available carbohydrateand thus reduce seed set Assimilate partitioning, storage, remobilization, stem, spike, seed  相似文献   

12.
Maia Akhalkatsi  Rainer Lsch 《Flora》2005,200(6):493-501
The annual garden spice legume Trigonella coerulea was subjected to controlled drought conditions to investigate the influence of resource limitation on flowering, seed production and germination. Limitations in water availability significantly reduced plant height and the number of fruits produced. However, treatments had no significant effect on seed set within the fruit. Fruit number per plant, rather than seed number per fruit was affected by resource limitation. Plants growing under water deficiency had higher flower abortion rates. Simultaneously, the size and germination rate of the seeds were decreased. In terms of reproductive success T. coerulea was not able to adapt reproduction to water shortage. Increase in moisture had no significant effect on seed quantity and quality when compared to the control.  相似文献   

13.
Abstract: Ovule and seed numbers, and the ratio between the two, were determined in chasmogamous (CH) and cleistogamous (CL) flowers/fruits in four perennial herbs: Viola hirta, V. mirabilis, V. riviniana, and Oxalis acetosella. The results were applied to data from earlier studies on fruit set and progeny performance in these species, to find implications for factors influencing seed: ovule (S: O) ratio, to relate S: O ratio to other fitness components, and to compare final numbers of seedlings per initiated ovule between the two reproductive modes. Mechanisms considered to have a potential impact on S: O ratios were pollen limitation, resource limitation, and "genetic load". In V. mirabilis and O. acetosella, mean S: O ratio was significantly higher in the CL phase than in the CH phase; in V. hirta and V. riviniana, there was no difference. Pollen limitation seemed improbable as a factor important for seed set in all species, and no indication was found of resource limitation. There was a negative correlation between S: O ratio and seed germination rate in O. acetosella, indicating that seed abortion, particularly in CH fruits, may be a way to purge inferior zygotes. The high CH S: O ratios in all species suggest that substantial selfing also occurs in this phase. The final number of seedlings per ovule did not differ significantly between modes in any of the species, partly due to poorer germination in CL seeds. This indicates that, despite the often lower pre-emergent reproductive success (fruit and seed set) in the CH phase, total reproductive success will not differ between the two modes because post-emergent selection is stronger on CL progeny. The strongest limitation on pre-emergent reproductive success in both phases is apparently related to flower/fruit abortion.  相似文献   

14.
The interaction of mating system and nutrient limitation in determining seed production was investigated in the annual, self-compatible plant Lupinus texensis (Fabaceae). Abortion of developing seeds is a major factor limiting seed production in natural populations (17-28%). Selfing rates are generally low (0.02-0.21), suggesting that deleterious recessive genes may be maintained at significant levels in natural populations. The average inbreeding depression associated with seed development is δ = 0.24. Nutrient limitation reduced seed output across experimental treatments by a factor of 0.22 through decreased production of inflorescences, flowers, and ovules, and by a factor of 0.29 through increased abortion of fruits and of seeds within fruits. Competition for resources among fruits increased the frequency of seed abortion. Moreover, a greater proportion of selfed seeds were aborted as the overall abortion rate increased. Estimates of genetic load may therefore only be appropriate if undertaken in the field, and inbreeding depression may vary from year to year simply due to changes in environmental conditions rather than to underlying genetic changes in populations. The existence of inbreeding depression and the high frequency of abortions suggest that selective abortion favoring outcrossed progeny occurs in natural populations of L. texensis.  相似文献   

15.
种子植物的选择性败育及其进化生态意义   总被引:2,自引:0,他引:2       下载免费PDF全文
种子植物的选择性败育是指植株在花粉源、传粉次序、果实在植株上的位置和发育果实中的种子数目等因素或者这些因素综合作用的基础上对发育中的幼果或种子选择性败育的现象。植株可以选择性地败育位于果序顶部或基部的果实以及位于果实基部、中部或柱头端的种子。此现象在被子植物中比较普遍,特别是在豆科、十字花科和紫草科中最为常见。导致植物选择性败育的主要原因主要有资源限制和遗传因子两个方面。植物通过选择性败育部分自交或基因型较差的果实或种子,不仅可以提高母本和后代的适合度,而且还可以提高果实或种子的扩散效率。因此,对选择性败育的研究在深入了解植物的结实结籽格局、探讨其进化式样与机制等方面具有重要意义。该文系统总结了国际上有关植物选择性败育的研究工作,重点介绍了选择性败育发生的式样、导致选择性败育的因素、选择性败育的进化生态意义,以及目前研究选择性败育现象的主要方法,并对该领域今后研究前景进行了展望。  相似文献   

16.
Identification of actively filling sucrose sinks   总被引:36,自引:14,他引:22       下载免费PDF全文
Sung SJ  Xu DP  Black CC 《Plant physiology》1989,89(4):1117-1121
Certain actively filling plant sucrose sinks such as a seed, a tuber, or a root can be identified by measuring the uridine diphosphate and pyrophosphate-dependent metabolism of sucrose. Sucrolysis in both active and quiescent sucrose sinks was tested and sucrose synthase was found to be the predominant sucrose breakdown activity. Sucrolysis via invertases was low and secondary in both types of sinks. Sucrose synthase activity dropped markedly, greater than fivefold, in quiescent sinks. The tests are consistent with the hypothesis that the sucrose filling activity, i.e. the sink strength, of these plant sinks can be measured by testing the uridine diphosphate and pyrophosphate-dependent breakdown of sucrose. Measuring the initial reactions of sucrolysis shows much promise for use in agriculture crop and tree improvement research as a biochemical test for sink strength.  相似文献   

17.
Assimilate partitioning was studied in the common pea (Pisum sativum L.) by feeding 14CO2 to whole plants and measuring radioactivity in different organs 48 hours after labeling. Two experimental protocols were used. For the first, one reproductive node was darkened with an aluminum foil, to prevent photosynthesis during labeling. The aim was to study assimilate translocation among nodes. The second was carried out to assess any priority among sinks. Whole plants were shaded, during labeling, to reduce carbon assimilation. Various developmental stages between the onset of flowering and the final stage in seed abortion of the last pod were chosen for labeling. When all photosynthetic structures at the first reproductive node were darkened at any stage of development after the formation of the first flower, the first pod was supplied with assimilates from other nodes. In contrast, later developed pods, when photosynthetic structures at their node were darkened, received assimilates from other nodes only when they were beyond their final stage in seed abortion. Reducing illumination to 30% did not change distribution of assimilated carbon between vegetative and reproductive structures, nor among pods. It appears that the relative proportion of 14C allocated to any one pod, compared to other pods, depends on the dry weight of that pod as a proportion of the total reproductive dry weight. When the plant was growing actively, following the start of the reproductive phase until a few days before the end of flowering, the top of the plant (i.e., all the organs above the last opened flower) had a higher sink strength and a higher relative specific activity than pods, suggesting that it was a more competitive sink for assimilates. The pattern of assimilate distribution described here provides an explanation for pod and seed abortion.  相似文献   

18.
In Pongamia pinnata only one of the two ovules develops into a seed in most of the pods. Since pollen was not found to be limiting and reduced fertilization could not completely explain the observed frequency of seed abortion, it implied an effect of postfertilization factors. Aqueous extracts of developing seeds and maternal tissue (placenta) did not influence abortion in vitro, suggesting that abortion may not be mediated by a chemical. Experimental uptake of 14C sucrose in vitro indicated that both the stigmatic and the peduncular seed have similar inherent capacities of drawing resources, but the peduncular seed is deprived of resources in the presence of the stigmatic seed. This deprivation of the peduncular seed could be offset by supplying an excess of hormones leading to the subsequent formation of two seeds in a pod. The prevalence of single-seeded pods in P. pinnata seems therefore to be a result of competition between the two seeds for maternal resources. The evolutionary significance of single-seeded pods in P. pinnata is discussed with respect to possible dispersal advantage enjoyed by such pods.  相似文献   

19.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

20.
Zhang L  Tan Q  Lee R  Trethewy A  Lee YH  Tegeder M 《The Plant cell》2010,22(11):3603-3620
Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号