首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The basic mechanism of uridine insertion/deletion RNA editing in mitochondria of kinetoplastid protists has been established for some time but the molecular details remained largely unknown. Recently, there has been significant progress in defining the molecular components of the editing reaction. A number of factors have been isolated from trypanosome mitochondria, some of which have been definitely implicated in the uridine insertion/deletion RNA editing reaction and others of which have been circumstantially implicated. Several protein complexes have been isolated which exhibit some editing activities, and the macromolecular organization of these complexes is being analyzed. In addition, there have been several important technical advances in the in vitro analysis of editing. In this review we critically examine the various factors and complexes proposed to be involved in RNA editing.  相似文献   

3.
The RNA ligase-containing or L-complex is the core complex involved in uridine insertion/deletion RNA editing in trypanosome mitochondria. Blue native gels of glycerol gradient-separated fractions of mitochondrial lysate from cells transfected with the TAP-tagged editing protein, LC-8 (TbMP44/KREPB5), show a ∼1 MDa L-complex band and, in addition, two minor higher molecular weight REL1-containing complexes: one (L*a) co-sedimenting with the L-complex and running in the gel at around 1.2 MDa; the other (L*b) showing a continuous increase in molecular weight from 1 MDa to particles sedimenting over 70S. The L*b-complexes appear to be mainly composed of L-complex components, since polypeptide profiles of L- and L*b-complex gradient fractions were similar in composition and L*b-complex bands often degraded to L-complex bands after manipulation or freeze–thaw cycles. The L*a-complex may be artifactual since this gel shift can be produced by various experimental manipulations. However, the nature of the change and any cellular role remain to be determined. The L*b-complexes from both lysate and TAP pull-down were sensitive to RNase A digestion, suggesting that RNA is involved with the stability of the L*b-complexes. The MRP1/2 RNA binding complex is localized mainly in the L*b-complexes in substoichiometric amounts and this association is RNase sensitive. We suggest that the L*b-complexes may provide a scaffold for dynamic interaction with other editing factors during the editing process to form the active holoenzyme or “editosome.”  相似文献   

4.
RNA editing in kinetoplastid protozoa.   总被引:1,自引:0,他引:1  
  相似文献   

5.
RNA editing in kinetoplastid protozoa.   总被引:17,自引:0,他引:17       下载免费PDF全文
  相似文献   

6.
7.
8.
RNA editing in Trypanosoma brucei inserts and deletes uridylates (U's) in mitochondrial pre-mRNAs under the direction of guide RNAs (gRNAs). We report here the development of a novel in vitro precleaved editing assay and its use to study the gRNA specificity of the U addition and RNA ligation steps in insertion RNA editing. The 5' fragment of substrate RNA accumulated with the number of added U's specified by gRNA, and U addition products with more than the specified number of U's were rare. U addition up to the number specified occurred in the absence of ligation, but accumulation of U addition products was slowed. The 5' fragments with the correct number of added U's were preferentially ligated, apparently by adenylylated RNA ligase since exogenously added ATP was not required and since ligation was eliminated by treatment with pyrophosphate. gRNA-specified U addition was apparent in the absence of ligation when the pre-mRNA immediately upstream of the editing site was single stranded and more so when it was base paired with gRNA. These results suggest that both the U addition and RNA ligation steps contributed to the precision of RNA editing.  相似文献   

9.
Several genes in trypanosomatic mitochondria require RNA editing for their expression. Although the reaction mechanism as well as the editing machinery have not been identified to date, evidence has accumulated suggesting that the process might be catalyzed by a ribonucleoprotein (RNP) complex. Here, H. Ulrich Göringer, Johannes Köller and Hsiao Hsueh Shu summarize what has been learnt in the past years about mitochondrial RNP complexes and discuss the evidence to link the various complexes to the editing process.  相似文献   

10.
11.
12.
Intestinal apolipoprotein B mRNA is edited at nucleotide 6666 by a C to U transition resulting in a translational stop codon. The enzymatic properties of the editing activity were characterised in vitro using rat enterocyte cytosolic extract. The editing activity has no nucleotide or ion cofactor requirement. It shows substrate saturation with an apparent Km for the RNA substrate of 2.2 nM. The editing enzyme requires no lag period prior to catalysis, and does not assemble into a higher order complex on the RNA substrate. In crude cytosolic extract editing activity is completely abolished by treatment with micrococcal nuclease or RNAse A. Partially purified editing enzyme is no longer sensitive to nucleases, but is inhibited in a dose dependent manner by nuclease inactivated crude extract. The buoyant density of partially purified editing enzyme is 1.3 g/ml, that of pure protein. Therefore, the apolipoprotein B mRNA editing activity consists of a well defined enzyme with no RNA component. The nuclease sensitivity in crude cytosolic extract is explained by the generation of inhibitors for the editing enzyme. The editing of apo B mRNA has little similarity to complex mRNA processing events such as splicing and unlike editing in kinetoplastid protozoa does not utilise guide RNAs.  相似文献   

13.
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing.  相似文献   

14.
RNA editing in plant mitochondria alters nearly all mRNAs by C to U and U to C transitions. In some species more than 400 edited sites have been identified with significant effects on the encoded proteins. RNA editing occurs in higher and lower plants and presumably has evolved before the differentiation of land plants. Current research focuses on the elucidation of the biochemistry and the specificity determinants of RNA editing in plant mitochrondria.  相似文献   

15.
RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa   总被引:40,自引:0,他引:40  
L Simpson  J Shaw 《Cell》1989,57(3):355-366
  相似文献   

16.
17.
B Blum  N Bakalara  L Simpson 《Cell》1990,60(2):189-198
A class of small RNA molecules possibly involved in RNA editing is present in the mitochondrion of Leishmania tarentolae. These "guide" RNA (gRNA) molecules are encoded in intergenic regions of the mitochondrial maxicircle DNA and contain sequences that represent precise complementary versions of the mature mRNAs within the edited regions. In addition, the 5' portions of several gRNAs can form hybrids with mRNAs just 3' of the preedited region. A model is presented in which a partial hybrid formed between the gRNA and preedited mRNA is substrate for multiple cycles of cleavage, addition or deletion of uridylates, and religation, eventually resulting in a complete hybrid between the gRNA and the mature edited mRNA.  相似文献   

18.
The process of RNA editing in plant mitochondria   总被引:1,自引:0,他引:1  
RNA editing changes more than 400 cytidines to uridines in the mRNAs of mitochondria in flowering plants. In other plants such as ferns and mosses, RNA editing reactions changing C to U and U to C are observed at almost equal frequencies. Development of transfection systems with isolated mitochondria and of in vitro systems with extracts from mitochondria has considerably improved our understanding of the recognition of specific editing sites in the last few years. These assays have also yielded information about the biochemical parameters, but the enzymes involved have not yet been identified. Here we summarize our present understanding of the process of RNA editing in flowering plant mitochondria.  相似文献   

19.
Trypanosome RNA editing is a massive processing of mRNA by U deletion and U insertion, directed by trans-acting guide RNAs (gRNAs). A U deletion cycle and a U insertion cycle have been reproduced in vitro using synthetic ATPase (A6) pre-mRNA and gRNA. Here we examine which gRNA features are important for this U deletion. We find that, foremost, this editing depends critically on the single-stranded character of a few gRNA and a few mRNA residues abutting the anchor duplex, a feature not previously appreciated. That plus any base-pairing sequence to tether the upstream mRNA are all the gRNA needs to direct unexpectedly efficient in vitro U deletion, using either the purified editing complex or whole extract. In fact, our optimized gRNA constructs support faithful U deletion up to 100 times more efficiently than the natural gRNA, and they can edit the majority of mRNA molecules. This is a marked improvement of in vitro U deletion, in which previous artificial gRNAs were no more active than natural gRNA and the editing efficiencies were at most a few percent. Furthermore, this editing is not stimulated by most other previously noted gRNA features, including its potential ligation bridge, 3' OH moiety, any U residues in the tether, the conserved structure of the central region, or proteins that normally bind these regions. Our data also have implications about evolutionary forces active in RNA editing.  相似文献   

20.
Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号