首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of organic sulfur from inorganic sulfate was investigated in hardwood forest floor and mineral horizons. All samples converted sulfate-sulfur into a non-salt extractable form which was recoverable only under conditions which release organic matter. This conversion was inhibited by azide, and depending upon the horizon, by erythromycin, candicidin, chloramphenicol and tetracycline. The form of sulfur generated in the 02 forest floor layer and in Al-horizon soil was characterized after isolation by pyrophosphate extraction at pH 8. The organosulfur extracts exhibited an average C:N:S ratio of 103:6:1. The ester sulfate content of the 02 extract was 61% by hydriodic acid (HI) reduction and 62% by hydrolysis in 3N HCl at 121 °C. However, compared to hydrolysis, reduction yielded lower estimates of ester sulfate for two of the three soil extracts analyzed. In view of the electrophoretic heterogeneity of all extracts, it is suggested that some may contain stable ester linkages that hydrolyze only after prolonged treatment and that the standard procedure for HI-reduction may provide conditions of temperature and contact time with the acid which are insufficient for the release of sulfate from these esters.Author to whom reprint requests should be addressed  相似文献   

2.
Chertov  O. G.  Komarov  A. S.  Tsiplianovsky  A. M. 《Plant and Soil》1999,213(1-2):31-41
The individual-based combined forest model EFIMOD including the soil-sub model SOMM has been used for the simulation of Scots pine stand growth and soil organic matter (SOM) accumulation on a humus-free bare mineral surface. The growth of Scots pine plantation, with an initial density of 10 000 trees ha−1 and average tree biomass of 0.01 kg was simulated for 50 yr under Central European climatic conditions (i) with varying atmospheric nitrogen inputs and (ii) different rates of initial application of raw undecomposed organic material or compost, on humus-free parent material. The accumulation of typical raw humus was simulated in all cases. The accumulation was most intensive in the simulation of high atmospheric nitrogen input. The humus pool in the mineral topsoil was small but achieved its maximum value with compost application. SOM nitrogen accumulation was scant in all cases, except the compost applications with low atmospheric nitrogen input. No statistically significant differences of SOM and stand parameters were found between variants without organic matter and those with low input of organic manure. However, the maximum relative rate of SOM and nitrogen accumulation was found in the scenario without organic manure, under slowly growing unstable Scots pine plantation. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Sulfate microbial immobilization and the mineralization of organic S were measured in vitro in soil horizons (LFH, Ae, Bhf, Bf and C) of the Lake Laflamme watershed (47°17 N, 71°14 O) using 35SO4. LFH samples immobilized from 23 to 77% of the added 35SO4 within 2 to 11 days. The 35SO4 microbial immobilization increased with temperature and reached an asymptote after a few days. The mineral soil generally immobilized less than 20% of the added 35SO4, and an asymptote was reached after 2 days. An isotopic equilibrium was rapidly reached in mineral horizons. A two-compartment (SO4 and organic S) model adequately described 35SO4 microbial immobilization kinetics. The active organic reservoir in the whole soil profile represented less than 1% of the total organic S. The average concentrations of dissolved organic S (DOS) in the soil solutions leaving the LFH, Bhf and Bf horizons were respectively 334, 282 and 143 µgL–1. Assuming that the DOS decrease with soil depth corresponded to the quantities adsorbed in the B horizons, we estimated that 12 800 kgha–1 of organic S could have been formed since the last glaciation, which is about 13 times the size of the actual B horizons reservoirs. Our results suggest that the organic S reservoirs present in mineral forest soils are mostly formed by the DOS adsorption resulting from incomplete litter decomposition in the humus layer. The capability of these horizons to immobilize SO4 from the soil solution would be restricted to a 1% active fraction composed of microorganisms. Despite their refractory nature, these reservoirs can, however, be slowly decomposed by microorganisms and contribute to the S-SO4 export from the watershed in the long term.  相似文献   

4.
Morphological changes in the decomposing litter ofAbies spp. andBetula spp. in a mor humus form were studied by a rapid thin section method. According to the morphological characteristics, the epidermis, mesophyll and vascular bundleof Abies needle litter were classified into four types: (i) newly fallen; (ii) slightly decomposed; (iii) moderately decomposed; and (iv) greatly decomposed. The distribution of these tissue types along the profile of the forest floor was then investigated. The morphological changes in other litter types, such as branches, scales andBetula leaves during decomposition were observed directly with microscope and electron microscope. Five vertical thin sections and 80 horizontal thin sections were used for these observations and investigations. the decomposition ofAbies litter was slower than that ofBetula litter. The relative decomposition rate of the tissues was in the order of: mesophyll>vascular bundle >epidermis inAbies needles; mesophyll≥epidermis>vascular bundles inBetula leaves; and inner bark >xylem>outer bark in bothAbies andBetula branches. The last remains of the litter were usually stomata, segments of seminiferous scale and outer bark ofAbies. The decomposition of plant litter occurred mainly within the L and F layers of the soil (0–5 cm in depth).Abies needles andBetula leaves completely disappeared at depths of 0–6 cm and 0–4 cm, respectively. Branches disappeared within the top of 5 cm and 6–8 cm forBetula and forAbies, respectively. The scales ofAbies were most slowly decomposed in the soil layers.  相似文献   

5.
2010年10月26日-2011年4月18日在川西亚高山地区季节性冻融期间,选择典型的红桦-岷江冷杉林,采用凋落物分解袋法调查了不同网孔(0.02、0.125、1和3 mm)凋落物分解袋内的凋落物质量损失,分析微型、中型和大型土壤动物对红桦凋落叶分解的贡献.结果表明:在季节性冻融期间,0.02、0.125、1和3 mm分解袋内的红桦凋落叶质量损失率分别为11.8%、13.2%、15.4%和19.5%,不同体径土壤动物对红桦凋落叶质量损失的贡献率为39.5%;不同孔径凋落物袋内土壤动物的类群和个体相对密度与凋落叶的质量损失率的变化趋势相对一致.在季节性冻融的初期、深冻期和融化期,不同土壤动物对红桦凋落叶质量损失的贡献率为大型土壤动物(22.7%)>中型土壤动物(11.9%)>微型土壤动物(7.9%).季节性冻融期间土壤动物活动是影响川西亚高山森林凋落物分解的重要因素之一.  相似文献   

6.
Litterfall from a Melaleuca forest was investigated as part of chemical cycling studies on the Magela Creek floodplain in tropical, northern Australia. The forest contained two species of tree, Melaleuca cajaputi and Melaleuca viridiflora, with a combined average density of 294 trees ha–1. The M. viridiflora trees had diameter breast height measurements ranging from 11.8 to 62.0 cm, median class 25.1–30.0cm and a mean value of 29.2±1.0 cm, compared to 13.0 to 66.3 cm, 30.1–35.0cm and 33.5±1.0cm for M. cajaputi trees. A regression model between tree height, diameter breast height and fresh weight was determined and used to calculate average tree weights of 775±1.6kg for M. viridiflora and 1009±1.6kg for M. cajaputi, and a total above-ground fresh weight of 263±0.3t ha–1. The weight of litter recorded each month on the ground beneath the tree canopy ranged from 582±103 to 2176±376 g m–2 with a monthly mean value of 1105±51 g m–2. The coefficient of variation of 52% on this mean indicates the large spatial and temporal variability in litter distribution over the study site. This variability was greatly affected by the pattern of water flow and litter transport during the Wet season. Litterfall from the trees was evaluated using two techniques - nets and trays. The results from these techniques were not significantly different with annual litterfall collected in the nets being 705 ± 25 g m–2 and in the trays 716±49 g m–2. The maximum monthly amount of litterfall, 108 ±55g m–2, occurred during the Dry season months of June–July. Leaf material comprised 70% of the total annual weight of litter, 480±29 g m–2 in the nets and 495 ± 21 g m–2 in the trays. The tree density and weight of litter suggest that the Melaleuca forests are highly productive and contribute a large amount of material to the detrital/debris turnover cycle on the floodplain.  相似文献   

7.
8.
Summary Formation of ammonium during the reduction of nitrate under moderate and strict anaerobic incubation of two topsoils of a temperate forest catena, an acid mull and an anmoor was studied. In mull, both conditions of incubation caused reduction of nitrate and release of ammonium. The accumulation of ammonium continued even when there was no nitrate left hence indicating the formation of ammonium apparently through desamination of organic matter. Whereas, in anmoor neither any such formation of ammonium nor any significant reduction of nitrate was observed in the case of moderate anaerobic incubation. But under strict anaerobic incubation, progressive disappearance of nitrate was encountered from the beginning up to 30 days and this was accompanied by an increasing accumulation of ammonium in this soil. Yet this accumulation stopped when there was no nitrate left. Thus, the formation of ammonium is caused by the reduction of nitrate in anmoor.  相似文献   

9.
Abstract

Nitrogen fixation was measured in a Corsican pine (Pinus laricio Poiret) forest in Calabria (Southern Italy). Acetylene reduction activity (ARA) and CO2 production levels were determined by incubation of litter and superficial (0–5 cm) soil layer samples in the field, at monthly intervals. ARA variations were not correlated to those of substrate moisture, air temperature and microbial respiration. In fact N2 fixation presented phases of different intensity which irregularly followed each other. Both litter and soil showed similar rates of N2 fixation. Based on a C2H2:N2 ratio of 3:1 0.8 Kg N ha–1 y–1 in each layer are fixed in the Pinus laricio forest, thus contributing to the N status of the soil in this nutrient–poor forest.  相似文献   

10.
帽儿山森林落叶分解消耗与土壤动物关系的研究   总被引:15,自引:0,他引:15  
1引言森林凋落物分解是森林生态系统物质循环和能量流动的重要环节,枯枝落叶分解是由多种因素作用的复杂过程.研究枯枝落叶在自然环境下的分解消耗及其与土壤动物的关系具有重要的生态学意义[4],并对林业生产、营造人工林有一定的指导作用.在枯枝落叶分解研究中,...  相似文献   

11.
Soil macro-invertebrates and rate of litter disappearance were studied in a ridge plot with moder (mor) humus and a bottom plot with mull humus on a slope in a temperate mixed deciduous forest in Kyoto, Japan (J). The results were compared with those from two German beech forests (G) representative of European deciduous forest mor and mull. Between-plot differences in biomass of total saprophagous animals was much smaller in J than in G, which is dominated by earthworms. Susceptibility to soil acidity and zoogeographical distribution of earthworms were suggested to be related to this situation. Biomass of soil macro-invertebrates and litter turnover rate were compared among J, G and three types of tropical rainforests in Malaysia (M) in relation to climatic conditions. Taking into account among-site differences in temperature and moisture, which affect microbial activity and in biomass of saprophagous macro-invertebrates especially earthworms, the following order of importance of soil macro-invertebrates in determining the rate of litter disappearance was suggested: G>J>M. Based on the comparison of biomass of earthworms among European deciduous forests, Japanese deciduous forests and tropical rainforests, as well as on the presence or absence of anecic earthworms in these forests, it was suggested that this ranking could be generalized to European deciduous forests > Japanese deciduous forests > tropical rainforests. It was pointed out that this order was the opposite of the gradient in evapotranspiration rate existing among these regions.  相似文献   

12.
The effects of atmospheric nitrogen (N) deposition on organic matter decomposition vary with the biochemical characteristics of plant litter. At the ecosystem‐scale, net effects are difficult to predict because various soil organic matter (SOM) fractions may respond differentially. We investigated the relationship between SOM chemistry and microbial activity in three northern deciduous forest ecosystems that have been subjected to experimental N addition for 2 years. Extractable dissolved organic carbon (DOC), DOC aromaticity, C : N ratio, and functional group distribution, measured by Fourier transform infrared spectra (FTIR), were analyzed for litter and SOM. The largest biochemical changes were found in the sugar maple–basswood (SMBW) and black oak–white oak (BOWO) ecosystems. SMBW litter from the N addition treatment had less aromaticity, higher C : N ratios, and lower saturated carbon, lower carbonyl carbon, and higher carboxylates than controls; BOWO litter showed opposite trends, except for carbonyl and carboxylate contents. Litter from the sugar maple–red oak (SMRO) ecosystem had a lower C : N ratio, but no change in DOC aromaticity. For SOM, the C : N ratio increased with N addition in SMBW and SMRO ecosystems, but decreased in BOWO; N addition did not affect the aromaticity of DOC extracted from mineral soil. All ecosystems showed increases in extractable DOC from both litter and soil in response to N treatment. The biochemical changes are consistent with the divergent microbial responses observed in these systems. Extracellular oxidative enzyme activity has declined in the BOWO and SMRO ecosystems while activity in the SMBW ecosystem, particularly in the litter horizon, has increased. In all systems, enzyme activities associated with the hydrolysis and oxidation of polysaccharides have increased. At the ecosystem scale, the biochemical characteristics of the dominant litter appear to modulate the effects of N deposition on organic matter dynamics.  相似文献   

13.
1 Submergence of coastal wetlands in Louisiana is currently rapid and widespread. A number of factors contribute to this loss of habitat, including the activities of herbivores. The objective of this study was to examine the effects of large mammals, predominantly nutria and wild boar, on processes controlling soil elevation in coastal marshes.
2 Effects of herbivores on soil and vegetation were assessed by the use of paired fenced and unfenced plots over two successive growing seasons. Above-ground biomass, litter production, changes in soil elevation, vertical soil accretion, shallow subsidence, below-ground production of roots and rhizomes, the thickness of the root zone, soil bulk density, and soil organic matter were measured.
3 Above-ground biomass, below-ground production, soil elevation and the expansion of the root zone decreased due to herbivore activity. Litter production, the rate of soil surface accretion and shallow soil subsidence were all higher in grazed compared to ungrazed plots, while soil organic matter and bulk density did not differ significantly between treatments.
4 The results indicate that herbivores can have a negative effect on soil building processes, primarily by reducing below-ground production and expansion of the root zone. Where natural rates of mineral sediment deposition are high, coastal marshes are expected to persist, despite herbivore activities. However, where sediment inputs are substantially less, herbivores may lead to destruction of habitat.  相似文献   

14.
The formation of mor humus in an experimental grassland plot, which has been acidified by long-term fertiliser treatment, has been studied by comparing the rates of cellulose, soil organic matter and plant litter decay with those in an adjacent plot with near-neutral pH and mull humus. The decomposition of cellulose filter paper in litter bags of 5 mm, 1-mm and 45-μm mesh size buried at 3 to 4 cm depth the plots was followed by measuring the weight loss and changes in glucose content over a 6 month period. Soil pH was either 5.3 or 4.3. Decomposition of native soil organic matter and plant litter in soil from the same plots were followed using CO2 evolution in laboratory microcosms. Cellulose weight loss at pH 5.3 was greatest from the 5-mm mesh bags and least from the 45-um mesh bags. At pH 4.3 there was little weight loss from bags and no significant differences in weight loss between bags with different sized mesh. There was, however, a reduction in the glucose content of the hydrolysed and derivatised filter paper with time. The decomposition rate of native soil organic matter in the low pH soil was increased to that observed in the less acid soil when the pH of the former was increased from 4.3 to 5.3. The increase in decomposition rate of added plant litter in the more acid soil as a result of CA(OH)2 addition was only 60% of that observed in the soil with pH 5.3. These data support the hypothesis that the absence of soil animals and the restricted microbial decomposition in the acidic soil was responsible for mor humus formation.  相似文献   

15.
The major S constituents in terrestrial ecosystems include inorganic SO42–, C-bonded S and ester sulfate with the organic fractions constituting the major soil S pools. Conceptual models of S dynamics link inorganic SO42– flux to organic sulfur transformations and other elements such as N and C. Mass balance models have been useful in ascertaining whether a system is at steady-state with respect to adsorption processes and/or nutritional demands of vegetation for S. Chemical equilibrium/surface complexation models have been used to evaluate the effects of a complex of factors, including effects of pH on SO4 adsorption and precipitation; these models have not generally been integrated into ecosystem models of S dynamics. Models such as ILWAS, Birkenes, Storgama, Trickle-Down and MAGIC were developed to ascertain surface water acidification processes within watersheds; these models incorporated SO42– adsorption in some formulation combined with hydrological considerations. None of these models explicitly treat organic S transformations and fluxes. In contrast, grassland ecosystem models detail organic S transformations, but give little attention to adsorption and hydrologic factors. More detailed simulation models of S transformations in forest and grassland soils have recently been developed, but these results have yet to be incorporated into ecosystem and watershed models.  相似文献   

16.
The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.  相似文献   

17.
Soil compaction and forest floor removal influence fundamental soil processes that control forest productivity and sustainability. We investigated effects of soil compaction and forest floor removal on tree growth, N uptake and N status in ponderosa pine. Factorial combinations of soil compaction (non-compacted and compacted) and forest floor removal (forest floor present and no forest floor) were applied to three different surface soil textures. For studying N uptake, four trees from every treatment were 15N labeled with 130.6 mg m–2 of 15N. Tree responses to compaction were dependent on the forest floor removal level. In loam and clay soils, non-compacted+no forest floor was beneficial to tree growth. Tree growth was depressed with compaction+no forest floor in clay soil. In sandy loam soil, compaction+no forest floor showed the best tree growth. No N deficiency was found in any soil type but a graphical method suggested correlation between N status and tree growth. In loam and clay soils, compaction+forest floor present increased N uptake. Nitrogen uptake was explained significantly by potential N mineralization in loam and clay soils. In sandy loam soil, the effects of compaction and forest floor removal were more complex, with the N uptake improved in the compaction+no forest floor treatment and reduced under compaction+forest floor present. Soil compaction may have influenced N tracer uptake because of improved unsaturated flow and root-soil contact. However, N immobilization may have restricted N uptake in compaction+forest floor present in the sandy loam soil. The study illustrates how soil properties and site preparation can potentially interact to affect N dynamics and forest productivity.  相似文献   

18.
Prietzel  Jörg  Weick  Corry  Korintenberg  Julia  Seybold  Gabriele  Thumerer  Thomas  Treml  Bernd 《Plant and Soil》2001,230(2):287-305
The effect of repeated (NH4)2SO4 applications (3 × 700 kg ha–1 in 1988, 1991, and 1994, respectively) on S pools in soil, soil microbial biomass, and ground vegetation was studied at two Norway spruce (Picea abies L. [Karst.]) sites in the Black Forest/Germany. In both eco-systems, most of the total S pool was located in the soil. The soil also was the predominant compartment for retention of applied SO4 2--S. The fractions of organic and inorganic S forms in the initial soil S content, and the retention of experimentally applied S was different for both sites. In the podzol Schluchsee, organic S accounted for 92% of total S. In the cambisol Villingen, the S pool consisted of 33% organic S and 67% inorganic S. The retention of applied S in various compartments of both ecosystems reflected these proportions. Only minor amounts of fertilized S (<1%) was retained in the spruce trees, ground vegetation, and soil microbial biomass. However, between 51% (Villingen) and 72% (Schluchsee) of the applied S was retained in the soil. In the Schluchsee podzol, 75% of retained fertilizer S was accumulated as ester sulfate, whereas SO4 2-adsorption and precipitation of Al hydroxy sulfates were restricted by dissolved organic matter in the soil solution. In the Villingen cambisol, SO4 2- adsorption was the dominant process of S retention, although 20% of the fertilized S again was retained as ester sulfate. The significant relevance of organic S forms in the retention of fertilizer S in both soils emphasizes the need for models which include the formation and re-mineralization of organic S compounds, especially of ester sulfates, for correctly simulating and predicting the retention and remobilization of S in acid forest soils subject to changing atmospheric N and S deposition.  相似文献   

19.
The contribution of leaf litter decomposition to total soil CO2 efflux (FL/F) was evaluated in a beech (Fagus sylvatica L.) forest in eastern France. The Keeling‐plot approach was applied to estimate the isotopic composition of respired soil CO2 from soil covered with either control (?30.32‰) or 13C‐depleted leaf litter (?49.96‰). The δ13C of respired soil CO2 ranged from ?25.50‰ to ?22.60‰ and from ?24.95‰ to ?20.77‰, respectively, with depleted or control litter above the soil. The FL/F ratio was calculated by a single isotope linear mixing model based on mass conservation equations. It showed seasonal variations, increasing from 2.8% in early spring to about 11.4% in mid summer, and decreasing to 4.2% just after leaf fall. Between December 2001 and December 2002, cumulated F and FL reached 0.98 and 0.08 kgC m?2, respectively. On an annual basis, decomposition of fresh leaf litter accounted for 8% of soil respiration and 80% of total C loss from fresh leaf litter. The other fraction of carbon loss during leaf litter decomposition that is assumed to have entered the soil organic matter pool (i.e. 20%) represents only 0.02 kgC m?2.  相似文献   

20.
Tropical forests are a significant global source of the greenhouse gas nitrous oxide (N2O). Predicted environmental changes for this biome highlight the need to understand how simultaneous changes in precipitation and labile carbon (C) availability may affect soil N2O production. We conducted a small‐scale throughfall and leaf litter manipulation in a lowland tropical forest in southwestern Costa Rica to test how potential changes in both water and litter derived labile C inputs to soils may alter N2O emissions. Experimentally reducing throughfall in this wet tropical forest significantly increased soil emissions of N2O, and our data suggest that at least part of this response was driven by an increase in the concentration of dissolved organic carbon [DOC] inputs delivered from litter to soil under the drier conditions. Furthermore, [DOC] was significantly correlated with N2O emissions across both throughfall and litterfall manipulation plots, despite the fact that native NO3? pools in this site were generally small. Our results highlight the importance of understanding not only the potential direct effects of changing precipitation on soil biogeochemistry, but also the indirect effects resulting from interactions between the hydrologic, C and N cycles. Finally, over all sampling events we observed lower mean N2O emissions (<1 ng N2O‐N cm?2 h?1) than reported for many other lowland tropical forests, perhaps reflecting a more general pattern of increasing relative N constraints to biological activity as one moves from drier to wetter portions of the lowland tropical forest biome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号