首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insulin from individual isolated mouse islets of Langerhans   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
The phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA), at concentrations of 0.1 microM and above, stimulated secretion of glucagon and of insulin from isolated rat islets of Langerhans incubated in the presence of 5.5 mM-glucose. Stimulation of secretion of both hormones by 1 microM-PMA persisted in the absence of external Ca2+, and could be abolished by incubating the islets at 4 degrees C. These findings suggest a role of protein kinase C in the alpha-cell (and beta-cell) secretory mechanism.  相似文献   

5.
Rabbit islets of Langerhans were exposed at 37 °C for 18 h to a low-frequency-pulsed magnetic field, generated in paired Helmholtz coils. Exposed islets showed a reduction of 26.1 ± 4.3% in 45Ca2+ content (P < .004). a reduction of 25.1 ± 6.3% in 45Ca2+ efflux (P < .006), and a reduction of 35.0 ± 8.7% (P < .002) in insulin released during glucose stimulation when compared with appropriate controls.  相似文献   

6.
Protein kinase C (PKC)-dependent phosphorylation of endogenous substrates was measured in electrically permeabilised rat islets of Langerhans. The PKC-activating phorbol ester, 4 beta-phorbol myristate acetate (PMA), caused a slow but prolonged increase in insulin secretion from permeabilised islets, which was accompanied by increased 32P incorporation into several islet proteins of apparent M.W. 30-50 kDa. Depletion of islet PKC by prolonged exposure to PMA abolished subsequent secretory and phosphorylating responses to the phorbol ester. However, PKC-depleted islets did not show diminished responses to glucose, suggesting that PKC-mediated phosphorylation of these proteins is not essential for nutrient-induced insulin secretion.  相似文献   

7.
There is no consensus on the role of insulin secreted from pancreatic β-cells in regulating its own secretion, either in rodent islets or in human islets. We have now investigated whether there is an autocrine signalling role for insulin in human islets by determining insulin receptor expression and assessing the effects of insulin receptor activation using a non-peptidyl insulin mimetic termed L-783,281. Human insulin receptor mRNA was detected by PCR amplification of human islet cDNA, and translation of the message in human islets was confirmed by Western blotting. Perifusion experiments revealed that both glucose-stimulated and basal insulin secretion were significantly inhibited following human islet insulin receptor activation with L-783,281, and that signalling through phosphatidylinositol 3-kinase (PI 3-kinase) was responsible, at least in part, for this inhibitory effect. These studies indicate that human islets express insulin receptors and that they are functionally coupled to a PI 3-kinase-dependent inhibition of insulin secretion.  相似文献   

8.
N G Morgan  R D Hurst 《FEBS letters》1988,227(2):153-156
The neuropeptide bombesin provoked a dose-dependent stimulation of 45Ca2+ efflux from pre-loaded islets of Langerhans. This response occurred rapidly, was not sustained and did not depend on the presence of extracellular calcium, suggesting that it resulted from the mobilization of intracellular calcium stores. Under conditions when large increases in 45Ca2+ efflux were observed, bombesin completely failed to stimulate the rate of insulin secretion. Similar results were also obtained with the muscarinic cholinergic agonist, carbachol. The data suggest that the release of calcium from intracellular pools is not sufficient to induce an increase in insulin secretion in normal islet cells.  相似文献   

9.
The effects of L-asparaginase were evaluated on glucose-induced insulin release from isolated rat islets of Langerhans. Islets were obtained by enzymatic digestion of pancreas from Sprague-Dawley rats. The study of L-asparaginase effects on insulin secretion was performed in a static incubation of islets. Insulin secretion was measured at 60 min of incubation with different secretagogues with and without L-asparaginase. L-Asparaginase at concentrations from 310 to 5,000 U/ml could inhibit the glucose-induced insulin secretion in a dose-dependent manner. This effect was not recovered after incubation in the absence of the drug for another 2 h. The half-maximal inhibitory effect of the enzyme on insulin secretion was observed at L-asparaginase concentrations of 1,000 U/ml. Tolbutamide (200 microM) and ketoisocaproic acid (20 mM) did not induce insulin secretion in the presence of moderately high L-asparaginase concentrations. L-Asparaginase did not inhibit glucose-induced insulin secretion in the presence of isobutyl-methyl-xanthine (IBMX) (20 microM) or forskolin (20 microM). L-Asparaginase promoted a decrease in total c-AMP in isolated rat islets at concentrations from 500 to 1,500 U/ml when they were stimulated by glucose. If islets were treated with IBMX or forskolin, L-asparaginase did not inhibit the glucose-induced total c-AMP levels in islets.  相似文献   

10.
11.
Phalloidin, which stabilizes F-actin, has no effect on insulin secretion from intact islets, but penetrates and increases secretion from islets previously made permeable using a high voltage discharge technique. Use of this highly specific drug strongly suggests a role for microfilaments composed of F-actin in the insulin secretory process.  相似文献   

12.
Melittin , an amphipathic polypeptide, stimulated the secretion of insulin from rat islets of Langerhans incubated in vitro . The secretory response was dose-dependent and saturable with half the maximal response elicited by a melittin concentration of 4 g/ml. The response was rapid in onset, an increase in secretion occurring within 2 rain of exposure of the islets to melittin (2 g/ml). An enhanced secretory rate could be maintained for at least 40 rain in the presence of melittin but declined steadily when the agent was removed. Stimulation of secretion by melittin occurred in the absence of glucose and in the presence of both 4 mM and 8 mM glucose but not in the presence of 20 mM glucose. The effect of melittin on secretion was dependent on the presence of extracellular calcium but was not inhibited by norepinephrine. The data suggest that melittin may be a valuable agent for further study of the role played by the B-cell plasma membrane in the regulation of insulin secretion.  相似文献   

13.
To study insulin-glucagon interrelationships in the regulation of pancreatic islet functions, glucose-mediated insulin and glucagon secretion have been studied in isolated pancreatic islets from fed and from 4 and 8-day fasted rats. At low glucose levels (50 mg %) a continuous decrease of insulin and increase of glucagon secretion were observed during prolonged fasting. High glucose concentrations 300 mg %) stimulated insulin and inhibited glucagon secretion until 4 days, but did not cause any effect after 8 days fasting. These results suggest that the secretory mechanisms of the two hormones may have a common basis.  相似文献   

14.
In isolated rat islets the 2-adrenergic antagonist phenoxybenzamine was found to be only partially effective at relieving the inhibition of glucose-induced insulin secretion mediated by noradrenaline. Further experiment revealed a direct inhibitory effects of phenoxybenzamine itself on the secretory response to glucose. At concentrations above 1 M the antagonist inhibited insulin secretion in a dose-dependent manner, with greater than 50% inhibition at 50 M. The inhibition of secretion developed rapidly in perifused islets, and was not altered when islets were also incubated with idazoxan or benextramine, suggesting that it did not reflect binding of phenoxybenzamine to the 2-receptor. Paradoxically phenoxybenzamine significantly increased the basal secretion rate in the presence of 4 mM glucose. The results demonstrate that phenoxybenzamine can exert direct effects on insulin secretion which are unrelated to its -antagonist properties.  相似文献   

15.
16.
Taxol, a promotor of microtubule polymerization, and nocodazole, which induces microtubule depolymerization, used at concentrations known to be specific for these effects in other cell types, were each shown to inhibit glucose-stimulated insulin secretion from isolated rat islets of Langerhans. These findings suggest that the dynamic regulation of microtubule polymerization-depolymerization in pancreatic B ceils may be important for insulin secretion via the microtubule-microfilamentous system.  相似文献   

17.
18.
Immunoreactive somatostatin is released from islets of Langerhans, isolated from rat pancreas by collagenase digestion, when incubated in an in vitro system. The rate of somatostatin secretion is independent of extracellular glucose concentration, but is stimulated by addition of 8-Br-cyclic AMP or theophylline.  相似文献   

19.
In order to study the oeffect of somatostatin on the endocrine pancreas directly, islets isolated from rat pancreas by collagenase were incubated for 2 hrs 1) at 50 and 200 mg/100 ml glucose in the absence and presence of somatostatin (1, 10 and 100 mg/ml) and2) at 200 mg/100 ml glucose together with glucagon (5 mug/ml), with or without somatostatin (100 ng/ml). Immunologically measurable insulin was determined in the incubation media at 0, 1 and 2 hrs. Insulin release was not statistically affected by any concentration stomatostatin. On the other hand, somatostatin exerted a significant inhibitory action on glucagon-potentiated insulin secretion (mean +/- SEM, mu1/2 hrs/10 islets: glucose and glucagon: 1253 +/- 92; glucose, glucagon and somatostatin: 786 +/- 76). The insulin output in th epresence of glucose, glucagon and somatostatin was also significantly smaller than in thepresence of glucose alone (1104 +/- 126) or of glucose and somatostatin (1061 +/- 122). The failure of somatostatin to affect glucose-stimulated release of insulin from isolated islets contrasts its inhibitory action on insulin secretion as observed in the isolated perfused pancreas and in vivo. This discrepancy might be ascribed to the isolation procedure using collagenase. However, somatostatin inhibited glucagon-potentiated insulin secretion in isolated islets which resulted in even lower insulin levels than obtained in the parallel experiments without glucagon. It is concluded that the hormone of the alpha cells, or the cyclic AMP system, might play a part in the machanism of somatostatin-induced inhibition of insulin release from the beta-cell.  相似文献   

20.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号