首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deterioration as evidenced by decline in germination or seedling growth of soybean (cv. Essex) seeds during accelerated aging treatments at 41 C and 100% relative humidity is accompanied by increased levels of acetaldehyde and ethanol in imbibing embryonic axes and seeds. These increases become more pronounced with duration of the aging treatment. A similar inverse relationship between levels of acetaldehyde and ethanol and deterioration was observed when seeds were “naturally” aged for several years. During imbibition of low-vigor, accelerated-aged seeds at 25 C, acetaldehyde and ethanol increased from near trace amounts in dry tissues to maximum levels at 4 hours. Increases in acetaldehyde and ethanol during imbibition were less in high- than in low-vigor seeds. Increases were also less pronounced in low-vigor seeds when water uptake injury was avoided by osmotically decreasing water uptake rate with 30% polyethylene glycol. Embryonic axes from deteriorated seeds were characterized by low rates of O2 uptake and high respiratory quotients relative to the unaged controls. Anaerobic conditions and respiratory inhibitors, such as sodium azide, increased acetaldehyde and ethanol in unaged seeds to levels similar to those in accelerated-aged seeds after 2 hours imbibition. It is suggested that, during aging, an imbalance between tricarboxylic and glycolytic activities, present during early imbibition to some degree even in vigorous unaged seeds, becomes more pronounced and leads to accumulation of ethanol and acetaldehyde.  相似文献   

2.
Soybean seeds which had aged in long-term storage (“natural aging”) or by exposure to high temperature and humidity (“accelerated aging”) were analyzed for their tocopherol and organic free radical contents. Tocopherol levels remained unchanged during both types of aging. Three principal tocopherol homologues (α, γ, δ) were present in fairly constant proportions throughout. Organic free radical levels were also remarkably stable, presumably due to the relatively immobile environment of the dry seed. These results, taken in conjunction with previous data on the stability of unsaturated fatty acids in soybean seeds, indicate that it is improbable that lipid peroxidation need play a significant role during natural or accelerated aging in this species.  相似文献   

3.
Lipid peroxidation and peroxide-scavenging in soybean seeds during aging   总被引:8,自引:1,他引:7  
The possible role of lipid peroxidation in seed deterioration was investigated during natural aging and accelerated aging of seeds of edible soybean ( Glycine max [L], Merr. cv. Kaohsiung Selection No. 1). Natural aging was achieved by sealing the seeds in aluminum foil bags coated with polyethylene and storing the seeds at room temperature for 3 to 12 months. Accelerated aging was obtained by incubating the seeds at 45°C and close to 100% relative humidity for 3 to 12 days, after which the seeds were air dried to their original moisture level (8%). The results indicate that both natural and accelerated aging enhanced lipid peroxidation, as germination was depressed. Aging also inhibited the activity of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase. The changes in germination and physiological activities, expressed as a function of aging duration, were somewhat similar in the two aging treatments.  相似文献   

4.
Age-induced changes in cellular membranes of imbibed soybean seed axes   总被引:1,自引:0,他引:1  
The physical and chemical properties of microsomal membranes and cellular antioxidant systems were investigated in imbibed soybean ( Glycine max L. Merr. cv. Maple Arrow) seeds following aging for 5 years at room temperature. The loss of germination capacity in aged seeds was associated with increased solute leakage during imbibition and with a loss of membrane phospholipid. Higher levels of free fatty acids were observed in the microsomal membranes from aged seeds. However, there was no change in fatty acid saturation. Wide angle X-ray diffraction studies indicated the presence of gel phase in addition to liquid-crystalline phase lipid domains in the membranes of aged seeds. Those from fresh seeds were exclusively liquid-crystalline. Fluorescence depolarization, using diphenylhexatriene, suggested that the microviscosity of the membrane bilayer was increased by aging. Aged seeds had a lower antioxidant potential in the lipid fraction, lower tocopherol content, and reduced ascorbate:dehydroxyascorbate ratio indicating that the aging process was associated with exposure to an oxidative stress.  相似文献   

5.
The desiccation-tolerant state in seeds is associated with high levels of certain sugars and maturation proteins. The aim of this work was to evaluate the contributions of these components to desiccation tolerance in soybean (Glycine max [L.] Merrill cv Chippewa 64). When axes of immature seeds (34 d after flowering) were excised and gradually dried (6 d), desiccation tolerance was induced. By contrast, seeds held at high relative humidity for the same period were destroyed by desiccation. Maturation proteins rapidly accumulated in the axes whether the seeds were slowly dried or maintained at high relative humidity. During slow drying, sucrose content increased to five times the level present in the axes of seeds held at high relative humidity (128 versus 25 μg/axis, respectively). Stachyose content increased dramatically from barely detectable levels upon excision to 483 μg/axis during slow drying but did not increase significantly when seeds were incubated at high relative humidity. Galactinol was the only saccharide that accumulated to higher levels in axes from seeds incubated at high relative humidity relative to axes from seeds that were slowly dried. This suggests that slow drying serves to induce the accumulation of the raffinose series sugars at a point after galactinol biosynthesis. We conclude that stachyose plays an important role in conferring desiccation tolerance.  相似文献   

6.
Relevance of amadori and maillard products to seed deterioration   总被引:11,自引:1,他引:10       下载免费PDF全文
The possible role of Amadori and Maillard reactions in the deterioration of dry seeds was investigated using model systems and whole soybean seeds, Glycine max cv Hodgson. In model systems of glucose plus an enzyme (lysozyme), the production of Amadori products was accelerated by higher temperature and relative humidity. The reaction between glucose and lysozyme at 50°C, 75% relative humidity, leads to a progressive decline in enzymatic activity. During accelerated aging of soybean seeds (40°C, 100% relative humidity), a sequence is observed in which the Amadori products increase with time and then decline under conditions in which the Maillard products increase in the axes. Loss of germinability occurs at the time when the Maillard products increase in the soybean axes. These results are suggestive of a role for nonenzymic glycation in soybean seed deterioration during accelerated aging.  相似文献   

7.
When stored at 42°C and 100% relative humidity for 1 to 8 days, sunflower seeds (Helianthus annuus L. cv. Rodeo) aged prematurely and lost 25% of their initial viability. A ten-fold increase in conjugated dienes as well as a decrease of unsaturated fatty acids in diacylglycerol and polar lipids fractions were observed after 8 days of accelerated aging, demonstrating the occurrence of lipid peroxidation in prematurely aged sunflower seeds. However, the viability remained relatively high. The absence of membrane damage in seeds and of lipid peroxidation in isolated microsqmes suggested that lipid peroxidation concerned mainly lipid reserves. These results suggest that, at least within the first 8 days of treatment, the lipid reserve in sunflower seeds might act as a detoxifying trap, protecting membranes from excessive damage.  相似文献   

8.
On the mechanism of aging in soybean seeds   总被引:14,自引:7,他引:7       下载免费PDF全文
Changes in seeds of soybeans (Glycine max [L.] Merr. var. Wayne) which occur during accelerated aging (41 C, 100% relative humidity) showed subsequent loss of vigor, a decline in early respiratory activity, increased leakage of electrolytes, losses of as much as 10% dry weight from imbibing cotyledons, and a decrease in the swelling response of the imbibing system (seed plus H2O). Each of these changes with aging is interpreted as resulting from deteriorative changes in membranes.  相似文献   

9.
A competitive enzyme-linked immunosorbent assay (ELISA) was developed to quantify endogenous acetaldehyde-protein adducts (APAs) produced in plant seeds at low acetaldehyde concentrations without exogenous reducing agents. The key point of this technique is the use of a gelatin-acetaldehyde adduct, which is synthesized under 1 mM acetaldehyde and 10 mM NaCNBH3, to pre-coat plate wells to obtain the proper binding parameters for the quantification of APA in seed proteins. Compared with the traditional, direct ELISA method, the competitive one has higher sensitivity and less background. Using competitive ELISA, we determined the accumulation of endogenous APAs in seeds in relation to the loss of seed viability. Lettuce seeds were exposed to 2 mM gaseous acetaldehyde during storage for 30 or 45 d; the relative humidity and temperature of storage were studied independently. Viability decreased only in acetaldehyde-treated seeds, as either the temperature or the relative humidity increased. A loss in viability was accompanied by an increase in the accumulation of APA. The APA content also increased as viability decreased in five species of seeds, which were aged naturally without exposure to acetaldehyde. It is suggested that the modification of functional seed proteins with endogenously evolved acetaldehyde may be an important cause of seed aging.  相似文献   

10.
Lipoxygenase (LOX) is a common enzyme which catalyzes lipid peroxidation of seeds and consequently enhances seed quality deterioration and decreases seed viability. During seed storage, peroxidation of unsaturated fatty acids occur due to enhancement of LOX activity which directly leads to reduction in seed vigour and deterioration of grain nutritional quality. This study was undertaken to overcome these problem during rice seed storage by attenuating LOX activity using RNAi technology. To improve seed storage stability, we down regulated LOX gene activity by using a functional fragment of the LOX gene under the control of both constitutive (CaMV35S) and aleurone-specific (Oleosin-18) promoter separately. To understand the storage stability, RNAi–LOX seeds and non-transgenic control seeds were subjected to accelerated aging at 45 °C and 85 % relative humidity for 14 days. Our studies demonstrate that down regulation of LOX activity reduces the seed quality deterioration under storage condition. In addition GC–MS analysis revealed that reduction of fatty acid level in non-transgenic seeds during storage was higher when compared with that of transgenic rice seeds. Furthermore, the transgenic rice seeds with reduced LOX activity exhibited enhanced seed germination efficiency after storage than that of non-transgenic rice seeds. This study will have direct impact on nutritional stability of quality rice grains.  相似文献   

11.
本文以粤油 116花生(Arachis hypogaea L.)为材料,对不同处理种子的除子叶“种胚”(以下简称“种胚”)的蛋白质进行了研究.实验结果表明,当花生种子活力下降到一定程度时,其“种胚”内出现一种新蛋白质( pI6.2、MW 10 KD),随种子老化程度加深,含量逐渐增多.我们认为该蛋白质与花生种子老化存在着一定的相关关系,可作为该种子老化的标志.  相似文献   

12.
13.
M B Mudgett  J D Lowenson    S Clarke 《Plant physiology》1997,115(4):1481-1489
Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability.  相似文献   

14.
杉木种子劣变某些生理生化过程的数学模型   总被引:2,自引:0,他引:2  
建立了杉木种子劣变过程中SOD、质膜相对透性与不同生理生化过程的数学模型,并进行统计检验。结果表明:在高温下人工老化处理时间和不同湿度对不同生理生化过程行为模式均有不容忽视的.TTCH和SOD活性与老化时间存在着极为显著的线性负相关,相对电导率,可溶性糖及可溶性蛋白等与老化时间存在着较显著或显著或极显著的正相关。在高温状态下,高湿处理过的种子的质膜损伤速度、TTCH、SOD活性下降速率均大于低湿处理的。从数学模型及其比较看,SOD和质膜透性不仅对不同的生理生化过程的行为模式不同,而且在高温不同湿度条件下,对同一生理生化过程的行为模式亦发生变化。  相似文献   

15.
杂交水稻和不育系种子的劣变与生理生化变化   总被引:5,自引:0,他引:5  
杂交水稻和不育系种子在人工加速老化处理后,其发芽率、发芽指数和活力指数均比常规水稻种子下降迅速。在人工老化过程中,前者种子浸泡液的外渗氨基酸和钾离子含量均比后者高,游离的有机酸、氨基酸和脂肪酸含量增加的速度相似,均大于常规水稻种子。蛋白酶活性和可溶性蛋白质含量的增减,在易发生劣变种子与常规水稻种子之间均有显著差异。  相似文献   

16.
The accumulation of reactive oxygen species (ROS) in seed tissues plays an important role in the loss of seed viability during storage. In the present study, we examined whether the loss of germination capacity and viability of beech (Fagus sylvatica L.) seeds during storage under different temperatures (4, 20 and 30 degrees C) and relative humidity levels (45% and 75% RH) is associated with: (1) an increase in the level of ROS, such as superoxide radical (O2*-), oxygen peroxide (H2O2); and, (2) changes in low molecular antioxidants (ascorbate and glutathione) and enzymatic scavengers such as ascorbate peroxidase dehydroascorbate reductase, glutathione reductase, catalase, superoxide dismutase and guaiacol peroxidase. Beech seeds progressively lost their ability to germinate during 9 weeks of storage under the above conditions. The deleterious effects of temperature treatments increased with growing seed moisture content at higher humidity. The loss of seed viability was correlated with the generation of ROS during storage, which was more intensive at higher temperatures and humidity levels. The ascorbate content significantly increased in seeds stored in all temperature and humidity variants, when the seeds lost the ability to germinate to a large degree. At the same time, glutathione content dramatically decreased, but it was possible to observe a defensive reaction in seeds stored at 20 degrees C. Activities of all scavenging enzymes, measured after slow imbibition of seeds, significantly increased in comparison to the non-treated control (8-9% MC, -10 degrees C). This increase was higher in embryo axes than in cotyledons. Our results suggest that the loss of viability of beech seeds during storage at different temperatures, above zero, and at different humidity levels is closely related to ROS production, and that the antioxidative system is not sufficient to protect them.  相似文献   

17.
The aim of this study was to determine if the loss of germinability and viability of beech (Fagus sylvatica L.) seeds stored at different variants of temperature (4, 20, and 30 °C) and relative humidity (RH: 45 and 75 %) is associated with a loss of membrane integrity and changes in lipid composition. Beech seeds stored for 9 weeks gradually lost viability at a rate dependent on temperature and humidity. The harmful effect of temperature increased with growing humidity. The loss of seed viability was strongly correlated with an increase in membrane permeability and with production of lipid hydroxyperoxides (LHPO), which was regarded as an indicator of peroxidation of unsaturated fatty acids. The condition of membranes was assessed on the basis of their permeability and the state of lipid components: phospholipids and fatty acids. During seed storage we observed a decline in concentration of individual phospholipids and fatty acids, proportional to the loss of seeds viability. We also detected a decrease in concentrations of α-tocopherol and sterols, which play an important role in protection of membranes against the harmful influence of the environment. Our results show that the germinability of beech seeds declines rapidly at temperature above 0 °C and growing humidity. This is due mainly to the loss of membrane integrity, caused by peroxidation of unsaturated fatty acids.  相似文献   

18.
Hydration offers an effective means for raising seed performance in many crop species. The objective of the present study was to evaluate the effect of hydration in vermiculite on germinability and antioxidant capacity of glutathione in artificially aged triploid seeds of two watermelon cultivars. Aging was achieved by incubating the seeds at 45°C and 79% relative humidity for 6 days and then air-drying them to their original moisture level (4%). Hydration was achieved by mixing untreated and aged seeds with moist vermiculite No. 3 at 25°C for 24 h. The partially hydrated seeds were air-dried at 25°C for 36 h to 4.7% moisture level. Aged seeds germinated more slowly and poorly than unaged seeds. Aging also decreased the level of glutathione and reduced the activity of several enzymes involved in glutathione antiperoxidation. The germinability of aged triploid seeds was restored partially by hydration in vermiculite. The glutathione content and the activity of antiperoxidative enzymes using glutathione as substrate were also increased by hydration. The changes in germination and glutathione level in relation to aging and hydration were similar for the two cultivars, despite differences in their germination performance and related physiological traits.  相似文献   

19.
Arabian sandflies (Diptera: Psychodidae) prefer the hottest nights?   总被引:1,自引:0,他引:1  
Abstract. A vehicle-mounted net was used to collect hourly samples of sandflies on 15 nights during June in northern Oman. Every half hour, the temperature, relative humidity, wind velocity and light intensity were measured (there was no cloud or rainfall during this period).
The sandflies caught were mainly Phlebotomus alexandri and Sergentomyia clydei. Their circadian activity increased rapidly after sunset (18.50 hours). The high level of activity was fairly constant during 9 h of darkness until dawn, when it decreased rapidly. A few flies were still active at 07.00 hours, 1.5 h after sunrise.
A multiple regression showed that the main factor affecting sandfly activity was light intensity. When this factor was removed, by considering only the 135 catches collected during the 9 h of darkness, the second most important factor was low relative humidity, followed by low wind velocity. Temperature was not a significant factor in the analysis, because of its strong negative correlation with humidity. However, when the effect of humidity was removed from the regression, high temperature became significant, but less important than wind.
The regressions showed that, for flight activity, the optimum humidity was around 10%; the probable maximum wind velocity was 3.5 ms-1 and 11oC was the probable minimum temperature. Thus, when the 4 nights with highest catches (200–260 flies/night) were compared with the 4 nights with lowest catches (50–120 flies/night), the best nights had a low humidity (10–25%) and low wind speed (<0.3ms-1) in combination with highest temperatures (31–43oC).  相似文献   

20.
Hydration offers an effective means for raising seed performance in many crop species. The objective of this study was to evaluate the effect of vermiculite hydration on germinability and several physiological activities related to vigor in artificially aged watermelon seeds differing in ploidy. Aging was achieved by incubating the seeds at 45°C and 79% relative humidity for 6 days, then the seeds were air-dried to their original moisture level (4.7%). Hydration was achieved by mixing the untreated and aged seeds with moist vermiculite No. 3 at 25°C for 24 h. The partially hydrated seeds were air-dried at 25°C for 36 h to 4.7% moisture level. Significant differences existed between unaged and aged seeds, with lower germination percentage and slower germination speed in the latter. Aging also increased lipid peroxidation and reduced the activity of peroxide-scavenging enzymes. The germinability of aged watermelon seed was restored partially by vermiculite hydration. The activities of protein synthesis and peroxide-scavenging enzymes in axis and cotyledon portions of the seeds were also increased by hydration treatment. The changes in germination and related physiological responses in relation to aging and hydration are similar in seeds differing in ploidy, despite differences in their germination performance, seed leakage, extent of lipid peroxidation and activities of peroxide-scavenging enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号