首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-step method was developed for the purification of mesentericin Y105 (60% yield) from the culture supernatant of Leuconostoc mesenteroides Y105. The same procedure was successfully applied to the purification of five other anti-Listeria bacteriocins identified by mass spectrometry. Specific activities of the purified bacteriocins were compared.  相似文献   

2.
Mesentericin Y105 is a 37-residue bacteriocin produced by Leuconostoc mesenteroides Y105 that displays antagonistic activity against gram-positive bacteria such as Enterococcus faecalis and Listeria monocytogenes. It is closely related to leucocin A, an antimicrobial peptide containing β-sheet and α-helical structures. To analyze structure-function relationships and the mode of action of this bacteriocin, we generated a collection of mesentericin derivatives. Mutations were obtained mostly by PCR random mutagenesis, and the peptides were produced by an original system of heterologous expression recently described (D. Morisset and J. Frère, Biochimie 84:569-576, 2002). Ten derivatives were obtained displaying modifications at eight different positions in the mesentericin Y105 sequence. Purified peptides were incorporated into lysophosphatidylcholine micelles and analyzed by circular dichroism. The α-helical contents of these peptides were compared and related to their respective bactericidal activities. Moreover, studies of the intrinsic fluorescence of tryptophan residues naturally occurring at positions 18 and 37 revealed information about insertion of the peptides in micelles. A model for the mode of action of mesentericin Y105 and related bacteriocins is proposed.  相似文献   

3.
The production of bacteriocins by Leuconostoc mesenteroides represents an important opportunity for exploration of their potential use for industrial purpose. The antimicrobial compounds produced by L. mesenteroides subsp. mesenteroides SJRP55 strain were characterized and purified. Cell-free supernatant of Leuc. mesenteroides subsp. mesenteroides SJRP55 produced antibacterial compounds against Listeria spp. strains and not inhibiting against Lactobacillus spp. The antimicrobial substances were stable at high temperatures (100 °C for 2 h and 121 °C for 20 min) and low pH (pH 2–4) values, but sensitive to proteolytic enzymes and resistant to α-amylase, lipase and catalase enzymes. The optimal temperature for active peptides production was 25 °C. The antimicrobial compounds were purified by ammonium sulfate precipitation, affinity column and reverse-phase chromatography. Mass spectrometry and amino acids analyses showed that the bacteriocins were identical to mesentericin Y105 and B105. The producer strain’s DNA analysis revealed presence of open reading frames possibly coding for virulence factors, such as enterococcal surface protein (esp), collagen adhesion (ace) and intrinsic vancomycin resistance (vanA); however, biogenic amines encoding genes were not observed. Leuc. mesenteroides subsp. mesenteroides SJRP55 is a promising biopreservative culture in fermented milk, and the purified bacteriocins can also be applied in food preservation.  相似文献   

4.
Thirty-one Listeria strains were tested for sensitivity to four class IIa bacteriocins, namely, enterocin A, mesentericin Y105, divercin V41, and pediocin AcH, and to nisin A. Class IIa bacteriocins displayed surprisingly similar antimicrobial patterns ranging from highly susceptible to fully resistant strains, whereas nisin A showed a different pattern in which all Listeria strains were inhibited. Particularly, it was observed that the strain Listeria monocytogenes V7 could not be inhibited by any of the class IIa bacteriocins tested. These observations suggest that Listeria strains resistant to the whole range of class IIa bacteriocins may occur in natural environments, which could be of great concern with regard to the use of these peptides as food preservatives. Received: 22 October 1999 / Accepted: 15 December 1999  相似文献   

5.
The sigma54 factor has been previously described to be involved in Listeria monocytogenes sensitivity to mesentericin Y105, a subclass IIa bacteriocin. Here, we identified the rpoN gene, encoding sigma54, of Enterococcus faecalis JH2-2 and showed that its interruption leads to E. faecalis resistance to different subclass IIa bacteriocins. Moreover, this rpoN mutant remained sensitive to nisin, a class I bacteriocin, suggesting that sigma54 is especially involved in sensitivity to subclass IIa bacteriocins. Received: 5 May 2000 / Accepted 28 June 2000  相似文献   

6.
Aims: To identify and characterize novel bacteriocins from Weissella hellenica QU 13. Methods and Results: Weissella hellenica QU 13, isolated from a barrel used to make Japanese pickles, produced two novel bacteriocins termed weissellicin Y and weissellicin M. The primary structures of weissellicins Y and M were determined, and their molecular masses were determined to be 4925·12 and 4968·40 Da, respectively. Analysis of the DNA sequence encoding the bacteriocins revealed that they were synthesized and secreted without N‐terminal extensions such as leader sequences or sec signal peptides. Weissellicin M showed significantly high and characteristic homology with enterocins L50A and L50B, produced by Enterococcus faecium L50, while weissellicin Y showed no homology with any other known bacteriocins. Both bacteriocins showed broad antimicrobial spectra, with especially high antimicrobial activity against species, which contaminate pickles, such as Bacillus coagulans, and weissellicin M showed relatively higher activity than weissellicin Y. Furthermore, the stability of weissellicin M against pH and heat was distinctively higher than that of weissellicin Y. Conclusions: Weissella hellenica QU 13 produced two novel leaderless bacteriocins, weissellicin Y and weissellicin M, and weissellicin M exhibited remarkable potency that could be employed by pickle‐producing industry. Significance and Impact of the Study:  This study is the first report, which represents a complete identification and characterization of novel leaderless bacteriocins from Weissella genus.  相似文献   

7.
Morisset D  Frère J 《Biochimie》2002,84(5-6):569-576
Mesentericin Y105 (MesY105) is a class IIa anti-Listeria bacteriocin, produced by Leuconostoc (Ln.) mesenteroides Y105 and with potential food grade application. This bacterium produces a second bacteriocin, mesentericin B105 (MesB105), that does not belong to the same class. To study secretion of bacteriocins by the use of the MesY105 dedicated transport system (DTS), plasmids were constructed for heterologous expression by Ln. mesenteroides. pFBYC04 (Microbiology 144 (1998) 2845) harbours two divergent operons required for MesY105 secretion, i.e. the mesYI operon, encoding pre-MesY105 and immunity, respectively, and the mesCDE operon for secretion. A pFBYC04 derivative, pDMJF01 was constructed by divergent PCR to remove the mesY gene. Ln. mesenteroides DSM20484(pDMJF01) was unable to produce MesY105. The mesYI operon and mesB, mesH and mesF genes, encoding pre-MesB105, MesB105 immunity and a putative protein with unknown function, respectively, were cloned independently into a compatible pDMJF01 plasmid to produce, respectively, pDMJF:YI and pDMJF:BHF. DSM20484 transformed independently with these plasmids was unable to secrete any bacteriocin. MesY105 and MesB105 secretion was observed for DSM20484(pDMJF01) harbouring both pDMJF:YI and pDMJF:BHF. This indicates that the MesY105 DTS permits the transport of MesB105. MesY105 secretion machinery was used to secrete pediocin PA-1 (PedPA-1) by DSM20484 by an in-frame gene fusion strategy where the gene portions corresponding to the MesY105 leader peptide and the mature PedPA-1 were ligated. Thus, MesY105 secretion machinery appears to be a useful tool for secretion of class II bacteriocins by Leuconostoc.  相似文献   

8.
Bacteriocins are low molecular weight peptides secreted by the predator bacterial cells to kill sensitive cells present in the same ecosystem competing for food and other nutrients. Exceptionally few bacteriocins along with their native antibacterial property also exhibit additional anti-viral and anti-fungal properties. Bacteriocins are generally produced by Gm+, Gm– and archaea bacteria. Bacteriocins from Gm?+?bacteria especially from lactic acid bacteria (LAB) have been thoroughly investigated considering their great biosafety and broad industrial applications. LAB expressing bacteriocins were isolated from fermented milk and milk products, rumen of animals and soil using deferred antagonism assay. Nisin is the only bacteriocin that has got FDA approval for application as a food preservative, which is produced by Lactococcus lactis subsp. Lactis. Its crystal structure explains that its antimicrobial properties are due to the binding of NH2 terminal to lipid II molecule inhibiting the peptidoglycan synthesis and carboxy terminal forming pores in bacterial cell membrane leading to cell lysis. The hinge region connecting NH2 and carboxy terminus has been mutated to generate mutant variants with higher antimicrobial activity. In a 50 ton fermentation of the mutant strain 3807 derived from L. lactis subsp. lactis ATCC 11454, 9,960?IU/mL of nisin was produced. Currently, high purity of nisin (>99%) is very expensive and hardly commercially available. Development of more advanced tools for cost-effective separation and purification of nisin would be commercially attractive. Chemical synthesis and heterologous expression of bacteriocins ended in low yields of pure proteins. At present, bacteriocins are almost solely applied in food industries, but they have a great potential to be used in other fields such as feeds, organic fertilizers, environmental protection and personal care products. The future of bacteriocins is largely dependent on getting FDA approval for use of other bacteriocins in addition to nisin to promote the research and applications.  相似文献   

9.
Mesentericin Y105 is a 37-residue bacteriocin produced by Leuconostoc mesenteroides Y105 that displays antagonistic activity against gram-positive bacteria such as Enterococcus faecalis and Listeria monocytogenes. It is closely related to leucocin A, an antimicrobial peptide containing beta-sheet and alpha-helical structures. To analyze structure-function relationships and the mode of action of this bacteriocin, we generated a collection of mesentericin derivatives. Mutations were obtained mostly by PCR random mutagenesis, and the peptides were produced by an original system of heterologous expression recently described. Ten derivatives were obtained displaying modifications at eight different positions in the mesentericin Y105 sequence. Purified peptides were incorporated into lysophosphatidylcholine micelles and analyzed by circular dichroism. The alpha-helical contents of these peptides were compared and related to their respective bactericidal activities. Moreover, studies of the intrinsic fluorescence of tryptophan residues naturally occurring at positions 18 and 37 revealed information about insertion of the peptides in micelles. A model for the mode of action of mesentericin Y105 and related bacteriocins is proposed.  相似文献   

10.
A practical system was devised for grouping bacteriocins of lactic acid bacteria (LAB) based on mode of action as determined by changes in inhibitory activity to spontaneously-acquired bacteriocin resistance (BacR). Wild type Listeria monocytogenes 39-2 was sensitive to five bacteriocins produced by 3 genera of LAB: pediocin PA-1 and pediocin Bac3 (Pediococcus), lacticin FS97 and lacticin FS56 (Lactococcus), and curvaticin FS47 (Lactobacillus). A spontaneous BacR derivative of L. monocytogenes 39-2 obtained by selective recovery against lacticin FS56 provided complete resistance to the bacteriocin made by Lactococcus lactis FS56. The lacticin FS56-resistant strain of L. monocyotgenes 39-2 was also cross-resistant to curvaticin FS47 and pediocin PA-1, but not to lacticin FS97 or pediocin Bac3. The same pattern of cross-resistance was also observed with BacR isolates obtained with L. monocytogenes Scott A-2. A spontaneous mutation that renders a strain cross-resistant to different bacteriocins indicates that they share a common mechanism of resistance due to similar modes of action of the bacteriocins. Spontaneous resistance was acquired to other bacteriocins (in aggregate) by following the same procedure against which the BacR strain was still sensitive. In subsequent challenge assays, mixtures of bacteriocins of different modes of action provided greater inhibition than mixtures of bacteriocins of the same mode of action (as determined by our screening method). This study identifies a methodical approach to classify bacteriocins into functional groups based on mechanism of resistance (i.e., mode of action) that could be used for identifying the best mixture of bacteriocins for use as biopreservatives.  相似文献   

11.
A Leuconostoc mesenteroides ssp. mesenteroides was isolated from goat's milk on the basis of its ability to inhibit the growth of Listeria monocytogenes. The antimicrobial effect was due to the presence in the culture medium of a compound, named mesentericin Y105, excreted by the Leuconostoc mesenteroides Y105. The compound displayed known features of bacteriocins from lactic acid bacteria. It appeared as a proteinaceous molecule exhibiting a narrow inhibitory spectrum limited to genus Listeria. The apparent relative molecular mass, as indicated by activity detection after SDS-PAGE, was 2.5-3.0 kDa. The bacteriocin was purified to homogeneity by a simple three-step procedure: a crude supernatant obtained from an early-stationary-phase culture in a defined medium was subjected to affinity chromatography on a blue agarose column, followed by ultrafiltration through a 5 kDa cut-off membrane, and finally by reverse-phase HPLC on a C4 column. Microsequencing of the pure bacteriocin and of tryptic fragments showed that mesentericin Y105 is a 36 amino acid polypeptide whose primary structure is close to that of leucocin A-UAL 187, which contains an extra residue at the C-terminus and displays only two differences in the overlapping sequence. However, unlike leucocin A-UAL 187, mesentericin Y105 displayed a bactericidal mode of action.  相似文献   

12.
The aim of our study was to determine the genetic characterization and classification of Lb. gasseri K7 bacteriocins, comparison with bacteriocins of the Lb. gasseri LF221 strain and other related strains. Bacteriocin-encoding genes were amplified by PCR, subjected to DNA sequencing, and BLAST sequence analysis was performed to search the database for homologous peptides. Lb. gasseri K7 produces two two-peptide bacteriocins, named gassericin K7 A and gassericin K7 B. Their nucleotide sequences were deposited at GenBank, under accession numbers EF392861 for the gassericin K7 A and AY307382 for the gassericin K7 B. Analysis of gene clusters of bacteriocins in Lb. gasseri K7 strain revealed a 100 percent sequence identity with bacteriocins in LF221 strain. An active peptide of gassericin K7 B is homologous to the complementary peptide of gassericin T, and a complementary peptide of gassericin K7 B is homologous to the active peptide of gassericin T. Another surprising finding was that the sakacin T-beta peptide is partly homologous to the active peptide of gassericin K7 A, while the other sakacin T peptide (alfa) is partly homologous to the complementary peptide of gassericin K7 B. Gassericins of Lb. gasseri K7 strain were both classified as two-peptide bacteriocins. Human probiotic strains Lb. gasseri K7 and LF221 are different isolates but with identical bacteriocin genes. They produce wide-inhibitory spectra bacteriocins that are new members of two-peptide bacteriocins with some homologies to other bacteriocins in this group. Described bacteriocins offer a great potential in applications in food industry, pharmacy and biomedicine.  相似文献   

13.
This paper describes the production, the purification and the antilisterial activity of amylolysin, a novel bacteriocin from B. amyloliquefaciens GA1. The strain genome was first analysed using PCR techniques for the presence of gene clusters that direct the synthesis of characterised bacteriocins from B. amyloliquefaciens and the closely related B. subtilis. Our results suggest that amylolysin corresponds to a novel bacteriocin. The effect of amylolysin on the growth of different isolates of Listeria monocytogenes was evaluated in poultry meat during 21 days of storage at 4 °C. A potent antilisterial effect was observed for all the indicator strains tested, demonstrating that amylolysin is a novel bacteriocin that could be used as a food preservative.  相似文献   

14.
Bacteriocins are antimicrobial peptides produced by several bacterial species. Among the bacteriocins pediocin-like bacteriocins have a significant inhibitory activity on the foodborne pathogens especially on Listeria monocytogenes. This study aims to select a simple and usable purification method to purify/concentrate the antimicrobial peptide and characterization of the bacteriocin produced by Pediococcus acidilactici 13 by using proteomic approaches which is a recent omic technology. For purification dialysis, ultrafiltration method was used, and as a result of this study the bacteriocin activity reached 819,200 AU/mL from 102,400 AU/mL initially. Two dimensional gel electrophoresis and then matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) analysis were carried out to identify the current bacteriocin and related proteins. Obtained data revealed similarity to pediocin PA-1 transport/processing ATP-binding protein PedD (accession number: P36497), pediocin operon PedC (accession number: Q68GC4) and bacteriocin pediocin PA-1 (accession number: P29430) from UniProtKB/Swiss-Prot databank, thus the bacteriocin produced by P. acidilactici 13 is considered similar to pediocin PA-1.  相似文献   

15.
Aim: To characterize novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Methods and Results: Leuconostoc pseudomesenteroides QU 15 isolated from Nukadoko (rice bran bed) produced novel bacteriocins. By using three purification steps, four antimicrobial peptides termed leucocin A (ΔC7), leucocin A‐QU 15, leucocin Q and leucocin N were purified from the culture supernatant. The amino acid sequences of leucocin A (ΔC7) and leucocin A‐QU 15 were identical to that of leucocin A‐UAL 187 belonging to class IIa bacteriocins, but leucocin A (ΔC7) was deficient in seven C‐terminal residues. Leucocin Q and leucocin N are novel class IId bacteriocins. Moreover, the DNA sequences encoding three bacteriocins, leucocin A‐QU 15, leucocin Q and leucocin N were obtained. Conclusions: These bacteriocins including two novel bacteriocins were identified from Leuc. pseudomesenteroides QU 15. They showed similar antimicrobial spectra, but their intensities differed. The C‐terminal region of leucocin A‐QU 15 was important for its antimicrobial activity. Leucocins Q and N were encoded by adjacent open reading frames (ORFs) in the same operon, but leucocin A‐QU 15 was not. Significance and Impact of Study: These leucocins were produced concomitantly by the same strain. Although the two novel bacteriocins were encoded by adjacent ORFs, a characteristic of class IIb bacteriocins, they did not show synergistic activity.  相似文献   

16.
Lactobacillus plantarum JJ18 and Lactobacillus plantarum subsp. plantarum JJ60, probiotics from idli batter, produce bacteriocins JJ18 and JJ60 having a wide spectrum of activity. After optimising the environmental conditions for bacteriocin production the effect of various media components was determined. Maximum bacteriocin production was observed in MRS broth, pH 6.4 at 37 °C after 36 h. Tryptone (as nitrogen source) and glucose (as carbon source) are required for optimal production of bacteriocins JJ18 and JJ60. Activity was not affected by surfactants like Triton X-100, Tween 80 and Tween 20 or by treatment with NaCl, urea and EDTA. Protease treatment resulted in complete loss of activity of the partially purified bacteriocins JJ18 and JJ60, while lipase and α-amylase had no effect, indicating that the bacteriocin is a simple protein. Tris tricine SDS-PAGE electrophoresis depicted a single band of less than 3.5 kDa. However, the strain Lactobacillus plantarum JJ18 was inhibited by bacteriocin JJ60 and Lactobacillus plantarum JJ60 by bacteriocin JJ18, whereas no inhibition was observed against the respective producer strains, indicating that the two bacteriocins are different. The bacteriocins remained active over a wide range of pH and temperature. The bacteriocins were able to adsorb onto producer and target cells, Lactobacillus plantarum and Listeria monocytogenes and differentially in the presence of various surfactants, salts and solvents. A bactericidal mode of action was observed against Listeria monocytogenes. Given their wide spectrum of activity against various pathogens, the bacteriocins JJ18 and JJ60 can be applied as bio-preservatives in the food industry.  相似文献   

17.
AIMS: The aim of this study was to perform a detailed characterization of bacteriocins produced by lactic acid bacteria (LAB) isolated from malted barley. METHODS AND RESULTS: Bacteriocin activities produced by eight LAB, isolated from various types of malted barley, were purified to homogeneity by ammonium sulphate precipitation, cation exchange, hydrophobic interaction and reverse-phase liquid chromatography. Molecular mass analysis and N-terminal amino acid sequencing of the purified bacteriocins showed that four non-identical Lactobacillus sakei strains produced sakacin P, while four Leuconostoc mesenteroides strains were shown to produce bacteriocins highly similar or identical to leucocin A, leucocin C or mesenterocin Y105. Two of these bacteriocin-producing strains, Lb. sakei 5 and Leuc. mesenteroides 6, were shown to produce more than one bacteriocin. Lactobacillus sakei 5 produced sakacin P as well as two novel bacteriocins, which were termed sakacin 5X and sakacin 5T. The inhibitory spectrum of each purified bacteriocin was analysed and demonstrated that sakacin 5X was capable of inhibiting the widest range of beer spoilage organisms. CONCLUSION: All bacteriocins purified in this study were class II bacteriocins. Two of the bacteriocins have not been described previously in the literature while the remaining purified bacteriocins have been isolated from environments other than malted barley. SIGNIFICANCE AND IMPACT OF THE STUDY: This study represents a thorough analysis of bacteriocin-producing LAB from malt and demonstrates, for the first time, the variety of previously identified and novel inhibitory peptides produced by isolates from this environment. It also highlights the potential of these LAB cultures to be used as biological controlling agents in the brewing industry.  相似文献   

18.
Staphylococcin 1580 increased the relative amount of diphosphatidylglycerol and decreased the amount of phosphatidylglycerol in cells of Staphlococcus aureus, while the amounts of lysylphosphatidylglycerol, phosphatidic acid and total phospholipid remained constant.Treatment of cells of Escherichia coli and S. aureus with colicin A and staphylococcin 1580, respectively, did not affect proton impermeability but subsequent addition of carbonylcyanide-m-chlorophenylhydrazone resulted in a rapid influx of protons into the cells.Bacteriocin-resistant and -tolerant mutants of E. coli and S. aureus were isolated. The bacteriocins caused leakage of amino acids preaccumulated into membrane vesicles of resistant mutants and had no significant effect on membrane vesicles of tolerant mutants.The uptake of amino acids into membrane vesicles was inhibited by both bacteriocins, irrespective of the electron donors applied. The bacteriocin inhibition was noncompetitive. The bacteriocins did not affect oxygen consumption and dehydrogenases in membrane vesicles.Both bacteriocins suppressed the decrease in the fluorescence of 1-anilino-8-naphthalene sulfonate caused by d-lactate or α-glycerol phosphate when added to membrane vesicles.It is concluded that the bacteriocins uncouple the transport function from the electron transport system.  相似文献   

19.
Potential of Lactic Streptococci to Produce Bacteriocin   总被引:34,自引:15,他引:19       下载免费PDF全文
A survey was made on the bacteriocin-producing potential of lactic streptococci. Bacteriocin-like activities were isolated and partially purified from about 5% of the 280 strains investigated. The frequency of production varied from about 1% in Streptococcus lactis subsp. diacetylactis to 9 and 7.5% in S. lactis and Streptococcus cremoris, respectively. Eight strains of S. cremoris produced bacteriocins which, on the basis of heat stability at different pH values and inhibitory spectrum, could be divided into four types. From 54 S. lactis strains, 5 strains produced inhibitory substances, namely, three nisin-like antibiotics and two different bacteriocins. Only 1 of 93 S. lactis subsp. diacetylactis strains produced a bacteriocin which was very similar to bacteriocins of type I in S. cremoris. All of the bacteriocins that were partially purified by ammonium sulfate precipitation showed very limited inhibitory spectra. Most of the lactic streptococci and a few members of the genera Clostridium, Leuconostoc, and Pediococcus were inhibited. None of the bacteriocins acted on gram-negative bacteria. The bacteriocinogenic strains were also characterized on the basis of plasmid content. All strains possessed between one and nine plasmids ranging from 1 to 50 megadaltons.  相似文献   

20.
Mycobacterium tuberculosis shikimate dehydrogenase (MtbSD) catalyzes the forth reaction in the shikimate pathway. Here we describe production of K69A, K69H, K69I, K69Q, D105A, and D105N mutant proteins. Screening of several conditions was performed to optimize MtbSD production yield, and an improved purification protocol to obtain homogeneous MtbSD is presented. The rational design of new antitubercular drugs hinges on the availability of M. tuberculosis proteins. Our results show that optimization of expression, disruption, and purification protocols resulted in a higher yield of functional MtbSD enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号