首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Microelectrospray ionization-mass spectrometry was used to directly observe electron transferring flavoprotein.flavoprotein dehydrogenase interactions. When electron transferring flavoprotein and porcine dimethylglycine dehydrogenase or sarcosine dehydrogenase were incubated together in the absence of substrate, a relative molecular mass corresponding to the flavoprotein.electron transferring flavoprotein complex was observed, providing the first direct observation of these mammalian complexes. When an acyl-CoA dehydrogenase family member, human short chain acyl-CoA dehydrogenase, was incubated with dimethylglycine dehydrogenase and electron transferring flavoprotein, the microelectrospray ionization-mass spectrometry signal for the dimethylglycine dehydrogenase.electron transferring flavoprotein complex decreased, indicating that the acyl-CoA dehydrogenases have the ability to compete with the dimethylglycine dehydrogenase/sarcosine dehydrogenase family for access to electron transferring flavoprotein. Surface plasmon resonance solution competition experiments revealed affinity constants of 2.0 and 5.0 microm for the dimethylglycine dehydrogenase-electron transferring flavoprotein and short chain acyl-CoA dehydrogenase-electron transferring flavoprotein interactions, respectively, suggesting the same or closely overlapping binding motif(s) on electron transferring flavoprotein for dehydrogenase interaction.  相似文献   

2.
The acyl-CoA dehydrogenases (ACDs) are mitochondrial enzymes that dehydrogenate acyl-coenzyme A esters of different chain lengths. Inherited deficiencies of these dehydrogenases are commonly associated with muscle weakness and lipid storage. Numerous assays including spectrophotometric, fluorometric, chemical, and radiochemical procedures have been used, but there is need for a rapid, reproducible assay for the different acyl-CoA dehydrogenases in small frozen samples of human muscle biopsies. We describe a comparative study of dye-linked spectrophotometric assays of the long, medium, and short chain acyl-CoA dehydrogenases in frozen rat and human muscle samples. An optimal procedure is described confirming the value of glass-glass homogenization and assay of a 600g supernatant. Higher activities for all acyl-CoA dehydrogenases, citrate synthase, and cytochrome c oxidase were obtained in rat in contrast to human. The substrate-linked dye reduction method was found superior to the ferricenium or electron transfer flavoprotein acceptor systems. Application of the phenazine ethosulfate-DCPIP-linked method to medium-chain acyl-CoA dehydrogenase (MCAD) was studied in detail and the effect of immunoprecipitation of MCAD allowed for the determination of substrate specificity and the degree of crossover between long-, medium-, and short-chain ACD activity following immunoprecipitation. Finally, a comparison of the specificity and validity of the assay in a patient with MCAD deficiency was performed.  相似文献   

3.
Acyl-CoA dehydrogenases constitute a family of flavoproteins that catalyze the alpha,beta-dehydrogenation of fatty acid acyl-CoA conjugates. While they differ widely in their specificity, they share the same basic chemical mechanism of alpha,beta-dehydrogenation. Medium chain acyl-CoA dehydrogenase is probably the best-studied member of the class and serves as a model for the study of catalytic mechanisms. Based on medium chain acyl-CoA dehydrogenase we discuss the main factors that bring about catalysis, promote specificity and determine the selective transfer of electrons to electron transferring flavoprotein. The mechanism of alpha,beta-dehydrogenation is viewed as a process in which the substrate alphaC-H and betaC-H bonds are ruptured concertedly, the first hydrogen being removed by the active center base Glu376-COO- as an H+, the second being transferred as a hydride to the flavin N(5) position. Hereby the pKa of the substrate alphaC-H is lowered from > 20 to approximately 8 by the effect of specific hydrogen bonds. Concomitantly, the pKa of Glu376-COO- is also raised to 8-9 due to the decrease in polarity brought about by substrate binding. The kinetic sequence of medium chain acyl-CoA dehydrogenase is rather complex and involves several intermediates. A prominent one is the molecular complex of reduced enzyme with the enoyl-CoA product that is characterized by an intense charge transfer absorption and serves as the point of transfer of electrons to the electron transferring flavoprotein. These views are also discussed in the context of the accompanying paper on the three-dimensional properties of acyl-CoA dehydrogenases.  相似文献   

4.
T C Lehman  C Thorpe 《Biochemistry》1990,29(47):10594-10602
Medium-chain acyl-CoA dehydrogenase reduced with octanoyl-CoA is reoxidized in two one-electron steps by two molecules of the physiological oxidant, electron transferring flavoprotein (ETF). The organometallic oxidant ferricenium hexafluorophosphate (Fc+PF6-) is an excellent alternative oxidant of the dehydrogenase and mimics a number of the features shown by ETF. Reoxidation of octanoyl-CoA-reduced enzyme (200 microM Fc+PF6- in 100 mM Hepes buffer, pH 7.6, 1 degree C) occurs in two one-electron steps with pseudo-first-order rate constants of 40 s-1 and about 200 s-1 for k1 and k2, respectively. The reaction is comparatively insensitive to ionic strength, and evidence of rate saturation is encountered at high ferricenium ion concentration. As observed with ETF, the free two-electron-reduced dehydrogenase is a much poorer kinetic reductant of Fc+PF6-, with rate constants of 3 s-1 and 0.3 s-1 (for k1 and k2, respectively) using 200 microM Fc+PF6-. In addition to the enoyl-CoA product formed during the dehydrogenation of octanoyl-CoA, binding a number of redox-inert acyl-CoA analogues (notably 3-thia- and 3-oxaoctanoyl-CoA) significantly accelerates electron transfer from the dehydrogenase to Fc+PF6-. Those ligands most effective at accelerating electron transfer favor deprotonation of reduced flavin species in the acyl-CoA dehydrogenase. Thus this rate enhancement may reflect the anticipated kinetic superiority of anionic flavin forms as reductants in outer-sphere electron-transfer processes. Evidence consistent with the presence of two distinct loci for redox communication with the bound flavin in the acyl-CoA dehydrogenase is presented.  相似文献   

5.
We have used radio-high pressure liquid chromatography to study the acyl-CoA ester intermediates and the acylcarnitines formed during mitochondrial fatty acid oxidation. During oxidation of [U-14C]hexadecanoate by normal human fibroblast mitochondria, only the saturated acyl-CoA and acylcarnitine esters can be detected, supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in mitochondrial beta-oxidation. Incubations of fibroblast mitochondria from patients with defects of beta-oxidation show an entirely different profile of intermediates. Mitochondria from patients with defects in electron transfer flavoprotein and electron transfer flavoprotein:ubiquinone oxido-reductase are associated with slow flux through beta-oxidation and accumulation of long chain acyl-CoA and acylcarnitine esters. Increased amounts of saturated medium chain acyl-CoA and acylcarnitine esters are detected in the incubations of mitochondria with medium chain acyl-CoA dehydrogenase deficiency, whereas long chain 3-hydroxyacyl-CoA dehydrogenase deficiency is associated with accumulation of long chain 3-hydroxyacyl- and 2-enoyl-CoA and carnitine esters. These studies show that the control strength at the site of the defective enzyme has increased. Radio-high pressure liquid chromatography analysis of intermediates of mitochondrial fatty acid oxidation is an important new technique to study the control, organization and defects of the enzymes of beta-oxidation.  相似文献   

6.
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.  相似文献   

7.
8.
Abstract

Human ‘electron transferring flavoprotein’ (ETF) was inactivated by the thiol-specific reagent 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). The kinetic profile showed the reaction followed pseudo-first-order kinetics during the initial phase of inactivation. Monitoring the release of 5-thio-2-nitrobenzoate (TNB) showed that modification of 1 cysteine residue was responsible for the loss of activity. The inactivation of ETF by DTNB could be reversed upon incubation with thiol-containing reagents. The loss of activity was prevented by the inclusion of medium chain acyl-CoA dehydrogenase (MCAD) and octanoyl-CoA. Cyanolysis of the DTNB modified-ETF with KCN led to the release of TNB accompanied presumably by the formation of the thio-cyano enzyme and with almost full recovery of activity. Conservation studies and the lack of 100% inactivation, however, suggested that this cysteine residue is not essential for the interaction with MCAD.  相似文献   

9.
The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.  相似文献   

10.
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.  相似文献   

11.
The interaction between the “electron transferring flavoprotein” (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the β-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.  相似文献   

12.
Short chain acyl-CoA (SCA), medium chain acyl-CoA (MCA), and isovaleryl-CoA (IV) dehydrogenases were purified to homogeneity from human liver using ammonium sulfate fractionation followed by DEAE-Sephadex A-50, hydroxyapatite, Matrex Gel Blue A, agarose-hexane-CoA, and Bio-Gel A-0.5 column chromatographies. The specific activities of the final preparations were enriched 507-, 750-, and 588-fold over those from the second ammonium sulfate fractionation step. The native molecular weights were estimated to be 168,000, 178,000, and 172,000, respectively, by gel filtration. Each of them exhibited, on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, a single protein band with molecular weights of 41,000, 44,000, and 42,000, respectively, indicating a homotetrameric structure. UV/visual spectra, fluorescence spectra, and other evidence indicated that each contains 1 mol of FAD per subunit. They all utilized electron transfer flavoprotein (ETF) or phenazine methosulfate (PMS) as an electron acceptor. The products of SCA dehydrogenase/butyryl-CoA, MCA dehydrogenase/octanoyl-CoA, and IV dehydrogenase/isovaleryl-CoA reactions were identified as crotonyl-CoA, 2-octenoyl-CoA, and 3-methylcrotonyl-CoA, respectively, using gas chromatography. Kinetic parameters Vappmax and Kappm) of these enzymes for various acyl-CoA substrates, as well as Kappm values for ETF and PMS are presented. In general, the substrate specificities of human SCA, MCA, and IV dehydrogenases are slightly less stringent than those of their rat counterparts and resemble those of their bovine and porcine counterparts. The pattern of substrate specificity for these enzymes determined using ETF as electron acceptor significantly differed from that determined using PMS. All of them were severely inhibited by (methylenecyclopropyl)acetyl-CoA.  相似文献   

13.
The acetylenic thioester, 2-octynoyl-CoA, inactivates medium chain acyl-CoA dehydrogenase from pig kidney by two distinct pathways depending on the redox state of the FAD prosthetic group. Inactivation of the oxidized dehydrogenase occurs with labeling of an active site glutamate residue and elimination of CoASH. Incubation of the reduced dehydrogenase with 2-octynoyl-CoA rapidly forms a kinetically stable dihydroflavin species which is resistant to reoxidation using trans-2-octenoyl-CoA, molecular oxygen, or electron transferring flavoprotein. The reduced enzyme derivative shows extensive bleaching at 446 nm with shoulders at 320 and 380 nm. Denaturation of the reduced derivative in 80% methanol yields a mixture of products which was characterized by HPLC, by uv/vis, and by radiolabeling experiments. Approximately 20% of the flavin is recovered as oxidized FAD, about 40% is retained covalently attached to the protein, and the remainder is distributed between several species eluting after FAD on reverse-phase HPLC. The spectrum of one of these species ressembles that of a N(5)-C(4a) dihydroflavin adduct. These data suggest that a primary reduced flavin species undergoes various rearrangements during release from the protein. The possibility that the inactive modified enzyme represents a covalent adduct between 2-octynoyl-CoA and reduced flavin is discussed. Analogous experiments using enzyme substituted with 1,5-dihydro-5-deaza-FAD show rapid and quantitative reoxidation of the flavin by 0.5 eq of 2-octynoyl-CoA.  相似文献   

14.
Human electron transfer flavoprotein (ETF) is a soluble mitochondrial heterodimeric flavoprotein that links fatty acid β-oxidation to the main respiratory chain. The crystal structure of human ETF bound to medium chain acyl-CoA dehydrogenase indicates that the flavin adenine dinucleotide (FAD) domain (αII) is mobile, which permits more rapid electron transfer with donors and acceptors by providing closer access to the flavin and allows ETF to accept electrons from at least 10 different flavoprotein dehydrogenases. Sequence homology is high and low-angle X-ray scattering is identical for Paracoccus denitrificans (P. denitrificans) and human ETF. To characterize the orientations of the αII domain of P. denitrificans ETF, distances between enzymatically reduced FAD and spin labels in the three structural domains were measured by double electron-electron resonance (DEER) at X- and Q-bands. An FAD to spin label distance of 2.8 ± 0.15 nm for the label in the FAD-containing αII domain (A210C) agreed with estimates from the crystal structure (3.0 nm), molecular dynamics simulations (2.7 nm), and rotamer library analysis (2.8 nm). Distances between the reduced FAD and labels in αI (A43C) were between 4.0 and 4.5 ± 0.35 nm and for βIII (A111C) the distance was 4.3 ± 0.15 nm. These values were intermediate between estimates from the crystal structure of P. denitrificans ETF and a homology model based on substrate-bound human ETF. These distances suggest that the αII domain adopts orientations in solution that are intermediate between those which are observed in the crystal structures of free ETF (closed) and ETF bound to a dehydrogenase (open).  相似文献   

15.
cDNA encoding the precursor of rat liver medium chain acyl-CoA dehydrogenase (EC 1.3.99.3) was cloned and sequenced. The longest cDNA insert isolated was 1866 bases in length. This cDNA encodes the entire protein of 421-amino acids including a 25-amino acid leader peptide and a 396-amino acid mature polypeptide. The identity of the medium chain acyl-CoA dehydrogenase clone was confirmed by matching the amino acid sequence predicted from the cDNA to the NH2-terminal and nine internal tryptic peptide sequences derived from pure rat liver medium chain acyl-CoA dehydrogenase. The calculated molecular masses of the precursor medium chain acyl-CoA dehydrogenase, the mature medium chain acyl-CoA dehydrogenase, and the leader peptide are 46,600, 43,700, and 2,900 daltons, respectively. The leader peptide contains five basic amino acids and only one acidic amino acid; thus, it is positively charged, overall. Cysteine residues are unevenly distributed in the mature portion of the protein; five of six are found within the NH2-terminal half of the polypeptide. Comparison of medium chain acyl-CoA dehydrogenase sequence to other flavoproteins and enzymes which act on coenzyme A ester substrates did not lead to unambiguous identification of a possible FAD-binding site nor a coenzyme A-binding domain. The sequencing of other homologous acyl-CoA dehydrogenases will be informative in this regard.  相似文献   

16.
2-Methyl-branched chain acyl-CoA dehydrogenase was purified to homogeneity from rat liver mitochondria. The native molecular weight of the enzyme was estimated to be 170,000 by gel filtration. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis both with and without 2-mercaptoethanol, the enzyme showed a single protein band with Mr = 41,500, suggesting that this enzyme is composed of four subunits of equal size. Its isoelectric point was 5.50 +/- 0.2, and A1%280 nm was 12.5. This enzyme contained protein-bound FAD. The purified enzyme dehydrogenated S-2-methylbutyryl-CoA and isobutyryl-CoA with equal activity. The activities with each of these compounds were co-purified throughout the entire purification procedure. This enzyme also dehydrogenated R-2-methylbutyryl-CoA, but the specific activity was considerably lower (22%) than that for the S-enantiomer. The enzyme did not dehydrogenate other acyl-CoAs, including isovaleryl-CoA, propionyl-CoA, butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA, at any significant rate. Apparent Km and Vmax values for S-2-methylbutyryl-CoA were 20 microM and 2.2 mumol min-1 mg-1, respectively, while those for isobutyryl-CoA were 89 microM and 2.0 mumol min-1 mg-1 using phenazine methosulfate as an artificial electron acceptor. The enzyme was also active with electron transfer flavoprotein. Tiglyl-CoA and methacrylyl-CoA were identified as the reaction products from S-2-methylbutyryl-CoA and isobutyryl-CoA, respectively. 2-Ethylacrylyl-CoA was produced from R-2-methylbutyryl-CoA. Tiglyl-CoA competitively inhibited the activity with both S-2-methylbutyryl-CoA and isobutyryl-CoA with a similar Ki. The enzyme activity was also severely inhibited by several organic sulfhydryl reagents such as N-ethylmaleimide, p-hydroxymercuribenzoate, and methyl mercury iodide. The pattern and degree of inhibition were essentially identical for both substrates. The purified 2-methyl-branched chain acyl-CoA dehydrogenase was immunologically distinct from isovaleryl-CoA-, short chain acyl-CoA-, medium chain acyl-CoA-, or long chain acyl-CoA dehydrogenase.  相似文献   

17.
Pig kidney general acyl-CoA dehydrogenase is markedly stabilized against loss of flavin and activity in 7.3 M-urea or at 60 degrees C upon reduction with sodium dithionite or octanoyl-CoA. Electron transferring flavoprotein is similarly stabilized, whereas egg white riboflavin-binding protein loses flavin more readily on reduction. These and other data support the anticipated correlation between the kinetic stability of the holoproteins and the oxidation-reduction potential of their bound flavins.  相似文献   

18.
Glutaric aciduria type 2 (multiple acyl-CoA dehydrogenase deficiency, MAD) is a multiple defect of mitochondrial acyl-CoA dehydrogenases due to a deficiency of electron transfer flavoprotein (ETF) or ETF dehydrogenase. The clinical spectrum are relatively wide from the neonatal onset, severe form (MAD-S) to the late-onset, milder form (MAD-M). In the present study, we determined whether the in vitro probe acylcarnitine assay using cultured fibroblasts and electrospray ionization tandem mass spectrometry (MS/MS) can evaluate their clinical severity or not. Incubation of cells from MAD-S patients with palmitic acid showed large increase in palmitoylcarnitine (C16), whereas the downstream acylcarnitines; C14, C12, C10 or C8 as well as C2, were extremely low. In contrast, accumulation of C16 was smaller while the amount of downstream metabolites was higher in fibroblasts from MAD-M compared to MAD-S. The ratio of C16/C14, C16/C12, or C16/C10, in the culture medium was significantly higher in MAD-S compared with that in MAD-M. Loading octanoic acid or myristic acid led to a significant elevation in C8 or C12, respectively in MAD-S, while their effects were less pronounced in MAD-M. In conclusion, it is possible to distinguish MAD-S and MAD-M by in vitro probe acylcarnitine profiling assay with various fatty acids as substrates. This strategy may be applicable for other metabolic disorders.  相似文献   

19.
Electron transfer flavoprotein: ubiqionone oxidoreductase (ETF-QO) is a component of the mitochondrial respiratory chain that together with electron transfer flavoprotein (ETF) forms a short pathway that transfers electrons from 11 different mitochondrial flavoprotein dehydrogenases to the ubiquinone pool. The X-ray structure of the pig liver enzyme has been solved in the presence and absence of a bound ubiquinone. This structure reveals ETF-QO to be a monotopic membrane protein with the cofactors, FAD and a [4Fe-4S](+1+2) cluster, organised to suggests that it is the flavin that serves as the immediate reductant of ubiquinone. ETF-QO is very highly conserved in evolution and the recombinant enzyme from the bacterium Rhodobacter sphaeroides has allowed the mutational analysis of a number of residues that the structure suggested are involved in modulating the reduction potential of the cofactors. These experiments, together with the spectroscopic measurement of the distances between the cofactors in solution have confirmed the intramolecular pathway of electron transfer from ETF to ubiquinone. This approach can be extended as the R. sphaeroides ETF-QO provides a template for investigating the mechanistic consequences of single amino acid substitutions of conserved residues that are associated with a mild and late onset variant of the metabolic disease multiple acyl-CoA dehydrogenase deficiency (MADD).  相似文献   

20.
Acyl-CoA dehydrogenases and acyl-CoA oxidases are two closely related FAD-containing enzyme families that are present in mitochondria and peroxisomes, respectively. They catalyze the dehydrogenation of acyl-CoA thioesters to the corresponding trans-2-enoyl-CoA. This review examines the structure of medium chain acyl-CoA dehydrogenase, as a representative of the dehydrogenase family, with respect to the catalytic mechanism and its broad chain length specificity. Comparing the structures of four other acyl-CoA dehydrogenases provides further insights into the structural basis for the substrate specificity of each of these enzymes. In addition, the structure of peroxisomal acyl-CoA oxidase II from rat liver is compared to that of medium chain acyl-CoA dehydrogenase, and the structural basis for their different oxidative half reactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号