首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
雌雄异株植物鼠李的生殖分配   总被引:1,自引:0,他引:1  
王娟  张春雨  赵秀海  邹璐  姜庆彪  丁胜建 《生态学报》2011,31(21):6371-6377
以雌雄异株树种鼠李为模式物种,分别从树枝、植株和种群水平上分析了雌雄异株树种鼠李的生殖分配过程,检验了营养生长与生殖过程之间的平衡。结果表明:树枝水平,鼠李年生殖生物量(花生物量+果生物量)投资具有显著的性别差异和个体差异(P<0.001)。雌花生物量大于雄花生物量,雌花生物量最大值为雄花生物量最大值的1.75倍。雌树和雄树的叶片生物量差异不显著(P>0.05)。植株水平上,鼠李生殖生物量(花生物量+果生物量)投资具有显著的性别差异和个体差异(P<0.001),雌树与雄树的花生物量和茎干径向增量差异显著(P<0.05),叶片生物量差异不显著(P>0.05)。鼠李胸径大小对花生物量、叶生物量和茎干径向增量影响显著(P<0.05)。鼠李雌树的花生物量和茎干径向增量均大于雄树。种群水平上,鼠李雄树始花期略早于雌树,2010年雌树和雄树分别于5月28日和5月25日始花。在360 m × 660 m研究样地内种群性比为0.17,卡方检验表明种群性比显著偏离1∶1(P<0.001)。雌树和雄树年平均生长量分别为0.78 mm和0.83 mm。因此,在树枝水平、植株水平以及种群水平上,雌雄异株树种鼠李的营养生长和生殖生长不存在平衡关系。推断鼠李雌树能够通过光合过程获得更多生物量来满足其生殖和营养生长过程需要。  相似文献   

3.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

4.
According to theory, in species in which male variance in reproductive success exceeds that of the females, sons are more costly to produce; females mated with high quality males or those in better condition should produce more sons. In monogamous species, however, the variance in the reproductive success of the two sexes is often similar and mate choice is often mutual, making predictions regarding sex allocation more difficult. In the rock sparrow Petronia petronia, both males and females have a sexually selected yellow patch on the breast, whose size correlates with individual body condition. We investigated whether the brood sex ratio co‐varies with the size of the yellow patch of the father and the mother in a sample of 173 broods (818 chicks) over 8 breeding seasons. While the size of the yellow patch of the mother and the father did not predict per se a deviation from the expected 1:1 sex ratio, brood sex ratios were predicted by the interaction of male and female yellow patch size. This result is surprising, as the ornament is sexually selected by both males and females as an indicator of quality in both sexes and should therefore be inherited by all offspring irrespective of their sex. It indirectly suggests that other sex‐specific traits associated with patch size (e.g. polygyny in males and fecundity in females) may explain the sex allocation bias observed in rock sparrows. Thus, female individual quality alone, as expressed through the size of the yellow patch, was not associated with the biases in sex ratios reported in this study. Our results rather suggest that sex allocation occurs in response to male attractiveness in interaction with female attractiveness. In other words, females tend to preferentially allocate towards the sex of the parent with more developed ornament within the pair.  相似文献   

5.
6.
Satoki Sakai 《Oecologia》1998,117(3):391-395
Using four populations of the liliaceous perennial Erythronium japonicum, I examined the hypothesis that sex allocation will be female-biased if the duration of sink-limited growth of fruits, during which fruits grow exponentially, is long. I found that all marked fruits in each population had a period of sink-limited growth. Among the four populations, the mean length of sink-limited growth increased, and the mean dry mass ratio of the sum of the corolla and androecium/fruit decreased, in a consistent order. Thus, plants in populations where the duration of sink-limited growth was long allocated relatively more of their resources to their female functions. This result was consistent with the above hypothesis. Received: 21 March 1998 / Accepted: 27 August 1998  相似文献   

7.
Wild and captive zebra finches (Taenopygia guttata), like severalother species, produce a male-biased sex ratio at fledging whenfood is scarce. This is due to primary sex-ratio adjustmentand female-biased nestling mortality. Given that young femalesfledging at low body masses have been shown to have low fecundityas adults, lower returns to parents from producing female offspringin conditions of restricted food has been raised as a functionalexplanation (Trivers and Willard's hypothesis of adaptive sexualinvestment; 1973). However, an alternative, mechanistic hypothesisis that under restricted conditions female chicks are more costlyto produce. In consequence, lower returns to parents under theseconditions would happen earlier in the life of female offspringrather than later. To test this hypothesis, I hand-reared chickson a food gradient. In the absence of parent-offspring and sib-sibinteractions, final body mass and growth rates for females werelower in conditions of restricted food. For males, final bodymass and growth rates did not differ with food condition. Lowfemale growth rates in food-restricted conditions might be onepotential mechanism causing female-biased mortality in birds.More importantly, this result is the strongest evidence yetof female offspring experiencing higher marginal fitness benefitsfrom additional food than males and it has implications forprimary and secondary sex-ratio adjustment. Also, as this mechanismhas been shown in the absence of parent-offspring interactions,significant questions can now be raised as to how parental andoffspring behavior interact in their effects on secondary sex-ratioadjustment.  相似文献   

8.
9.
Abstract. The sexual system of the semi-terrestrial shrimp Merguia rhizophorae is described, along with natural history observations on this unusual caridean. Individuals of M. rhizophorae in the Bocas del Toro Archipelago, Panama, were found occupying fossilized coral terraces in the upper and mid-intertidal zones, inhabiting caves and crevices, in and out of water. These fossilized coral terraces represent a new habitat for this species, which was previously reported only from mangrove swamps. Males, which made up 65% of the studied population, were smaller than females on average. No small juvenile females were observed, but transitional individuals having the characteristics of both males (gonopores) and females (ovaries) were observed in the population. These data suggest that individuals of M. rhizophorae are protandric hermaphrodites. Logistic regression indicated that the carapace length at which 50% of the individuals change sex is 4.89 mm. The abundance of shrimps at the study site was low. Shrimps were usually solitary, but occasionally observed in groups of ≤5 individuals. Shrimps were commonly observed walking while out of water, and in some cases, emerged shrimps jumped vigorously, presumably to avoid capture by the researcher or by predatory crabs. Additional studies on the reproductive biology and the behavioral ecology of members of this genus and of members of the closely related families Barbouridae and Lysmatidae will aid in understanding the evolutionary origin and the adaptive value of gender expression patterns in shrimps.  相似文献   

10.
Skews in the human sex ratio at birth have captivated scientists for over a century. The accepted average human natal sex ratio is slightly male biased, at 106 males per 100 females or 51.5 per cent males. Studies conducted on a localized scale show that sex ratios deviate from this average in response to a staggering number of social, economical and physiological variables. However, these patterns often prove inconsistent when expanded to other human populations, perhaps because the nature of the influences themselves exhibit substantial cultural variation. Here, data collected from 202 countries over a decade show that latitude is a primary factor influencing the ratio of males and females produced at birth; countries at tropical latitudes produced significantly fewer boys (51.1% males) annually than those at temperate and subarctic latitudes (51.3%). This pattern remained strong despite enormous continental variation in lifestyle and socio-economic status, suggesting that latitudinal variables may act as overarching cues on which sex ratio variation in humans is based.  相似文献   

11.
12.
13.
Split sex ratios, when some colonies produce only male and others only female reproductives, is a common feature of social insects, especially ants. The most widely accepted explanation for split sex ratios was proposed by Boomsma and Grafen, and is driven by conflicts of interest among colonies that vary in relatedness. The predictions of the Boomsma–Grafen model have been confirmed in many cases, but contradicted in several others. We adapt a model for the evolution of dioecy in plants to make predictions about the evolution of split sex ratios in social insects. Reproductive specialization results from the instability of the evolutionarily stable strategy (ESS) sex ratio, and is independent of variation in relatedness. We test predictions of the model with data from a long-term study of harvester ants, and show that it correctly predicts the intermediate sex ratios we observe in our study species. The dioecy model provides a comprehensive framework for sex allocation that is based on the pay-offs to the colony via production of males and females, and is independent of the genetic variation among colonies. However, in populations where the conditions for the Boomsma–Grafen model hold, kin selection will still lead to an association between sex ratio and relatedness.  相似文献   

14.
Resource allocation to male and female functions was investigated in Thymus vulgaris L. (thyme), a gynodioecious species, in which females produce twice as many seeds as hermaphrodites. Negative correlations were found between male and female fertility of hermaphrodites, providing evidence of a trade-off. There was a high variability in sexual investment, some of the hermaphrodites functioning almost as males, and others almost as females. Estimation of the relative cost of male and female gametes showed that the female advantage in seed production was mainly due to reallocation of the resources not allocated to male function into female function. The determination of sex allocation was shown to have a genetic component, and there were some evidence that an interaction between nuclear and cytoplasmic genomes was involved.  相似文献   

15.
Non-linear models were analysed to describe both the biological and commercial growth curves of the Segureña sheep, one of the most important Spanish breeds. We evaluated Brody, von Bertalanffy, Verhulst, logistic and Gompertz models, using historical data from the National Association of Segureña Sheep Breeders (ANCOS). These records were collected between 2000 and 2013, from a total of 129 610 weight observations ranging from birth to adulthood. The aim of this research was to establish the mathematical behaviour of body development throughout this breed’s commercial life (birth to slaughter) and biological life (birth to adulthood); comparison between both slopes gives important information regarding the best time for slaughter, informs dietary advice according to animals’ needs, permits economical predictions of productions and, by using the curve parameters as selection criteria, enables improvements in growth characteristics of the breed. Models were fitted according to the non-linear regression procedure of statistical package SPSS version19. Model parameters were estimated using the Levenberg–Marquardt algorithm. Candidate models were compared using the determinative coefficient, mean square error, number of iterations, Akaike information coefficient and biological coherence of the estimated parameters. The von Bertalanffy and logistic models were found to be best suited to the biological and commercial growth curves, respectively, for both sexes. The Brody equation was found to be unsuitable for studying the commercial growth curve. Differences between the parameters in both sexes indicate a strong impact of sexual dimorphism on growth. This can emphasize the value of the highest growth rate for females, indicating that they reach maturity earlier.  相似文献   

16.
To study the coexistence of sexual and gynogenetic forms, we examined the population structure of a gynogenetic complex of the Japanese crucian carp, Carassius auratus Temminck et Schlegel, during the April–June reproductive season by collecting 1225 mature fish that migrated from Lake Suwa to a tributary river for spawning. There were more sexual fish (about 80%) than gynogenetic fish in this complex, and the operational sex ratio in the sexual form was female biased (males were about 20%). Mean standard length and body weight of sexual females were larger than those of sexual males. Sex ratio was male biased in smaller fish (standard length, <8.5 cm) but female biased in larger fish (standard length, ≥8.5 cm). We determined age by scale ring marks; the average age of sexual females was higher than that of males, but there was no significant difference in the average age between sexual and gynogenetic females. Sex ratio in the sexual form was more female biased for old than for young fish, and the mean size of sexual females was larger than that of males of the same age. The clear female-biased sex ratio and age difference between sexual females and males can be explained either by (1) higher mortality of males or by (2) female-biased sex allocation. The latter process reduces the disadvantage of sex and contributes to the coexistence of sexual and gynogenetic forms. Received: November 24, 2000 / Accepted: March 6, 2001  相似文献   

17.
Sex allocation theory predicts that reproducing individuals will increase their fitness by facultatively adjusting their relative investment towards the rarer sex in response to population shifts in operational sex ratio (OSR). The evolution of facultative manipulation of sex ratio depends on the ability of the parents to track the conditions favouring skewed sex allocation and on the mechanism controlling sex allocation. In animals, which have well-developed sensorial mechanisms, facultative adjustment of sex ratios has been demonstrated on many occasions. In this paper, we show that plants have mechanisms that allow them to evaluate the population OSR. We simulated three different conditions of population OSR by manipulating the amount of pollen received by the female flowers of a monoecious herb, and examined the effect of this treatment on the allocation to male vs. female flowers. A shortage of pollen on the stigmas resulted in a more male-skewed sex allocation, whereas plants that experienced a relatively pollen rich environment tended to produce a more female-skewed sex allocation pattern. Our results for Begonia gracilis demonstrate that the individuals of this species are able to respond to the levels of pollination intensity experienced by their female flowers and adjust their patterns of sex allocation in accordance to the expectations of sex allocation theory.  相似文献   

18.
A general problem in evolutionary biology is that quantitative tests of theory usually require a detailed knowledge of the underlying trade-offs, which can be very hard to measure. Consequently, tests of theory are often constrained to be qualitative and not quantitative. A solution to this problem can arise when life histories are viewed in a dimensionless way. Recently, dimensionless theory has been developed to predict the size and age at which individuals should change sex. This theory predicts that the size at sex change/maximum size (L50/L(max)), and the age at sex change/age at first breeding (tau/alpha) should both be invariant. We found support for these two predictions across 52 species of fish. Fish change sex when they are 80% of their maximum body size, and 2.5 times their age at maturity. This invariant result holds despite a 60 and 25 fold difference across species in maximum size and age at sex change. These results suggest that, despite ignoring many biological complexities, relatively simple evolutionary theory is able to explain quantitatively at what point sex change occurs across fish species. Furthermore, our results suggest some very broad generalities in how male fitness varies with size and age across fish species with different mating systems.  相似文献   

19.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination.  相似文献   

20.
Mathematical models suggest that reproducing females may benefit by facultatively adjusting their relative investment into sons vs. daughters, in response to population‐wide shifts in operational sex ratio (OSR). Our field studies on viviparous alpine skinks (Niveoscincus microlepidotus) document such a case, whereby among‐ and within‐year shifts in OSR were followed by shifts in sex allocation. When adult males were relatively scarce, females produced male‐biased litters and larger sons than daughters. The reverse was true when adult males were relatively more common. That is, females that were courted and mated by few males produced mainly sons (and these were larger than daughters), whereas females that were courted and mated by many males produced mainly daughters (and these were larger than sons). Maternal body size and condition also covaried with sex allocation, and the shifting pattern of sexual size dimorphism at birth may reflect these correlated effects rather than a discrete component of an evolved sex‐allocation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号