首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principal motivation for the present work was the study of the kinetics of anaerobic metabolism. A new mathematical model of the bioenergetics of sprinting, incorporating a three-equation representation of anaerobic metabolism, is developed. Results computed using the model are compared with measured data from the mens' finals of the 100m event at the 1987 World Championships. The computed results closely predict the overall average performance of the competitors over the course of the entire race. Further calculations show the three-equation model of anaerobic metabolism to be a significant improvement over the previous one-equation model. Representative values of time constants that govern the rate of anaerobic energy release have been determined for elite male athletes. For phosphocreatine utilisation, values for lambda(2)=0. 20s(-1) and psi(2)=3.0s(-1) are consistent with data previously reported in the literature. New values of lambda(3)=0.033s(-1) and psi(3)=0.34s(-1) are proposed as offering an improved representation of the kinetics of oxygen-independent glycolysis. For the first time, tentative values for the time constants of ATP utilisation, lambda(1)=0.9s(-1) and psi(1)=20s(-1), are suggested. The maximum powers developed during sprinting by oxygen-independent glycolysis, PCr utilisation and endogenous ATP utilisation were calculated as 34. 1, 30.1 and 16.6Wkg(-1), respectively, with an overall maximum anaerobic power of 51.6Wkg(-1). Sample calculations show the mathematical model can be used in principle to derive data on the kinetics of anaerobic metabolism of individual athletes.  相似文献   

2.
《Epigenetics》2013,8(7):566-568
Cancer development results from the accumulation of genetic and epigenetic changes. By interacting with intracellular signaling to promote carcinogenesis, epigenetic networks can actively transform cancer–promoting signals from tumor-permissive microenvironment to coordinate cellular proliferation and metabolism in the initiation and progression of cancers. As reported recently, NF-kappaB which can be activated by many soluble bioactive factors enriched in tumor microenvironments can promote the switch of cellular glucose metabolism from oxidative phosphorylation to oxygen-independent glycolysis in tumor cells, in addition to its well-known anti-apoptosis functions. Such epigenetic trans-generation of microenvironmental factors plays important roles in the development of cancers, particularly inflammation-related or sporadic cancers.  相似文献   

3.
Insulin governs systemic glucose metabolism, including glycolysis, gluconeogenesis and glycogenesis, through temporal change and absolute concentration. However, how insulin‐signalling pathway selectively regulates glycolysis, gluconeogenesis and glycogenesis remains to be elucidated. To address this issue, we experimentally measured metabolites in glucose metabolism in response to insulin. Step stimulation of insulin induced transient response of glycolysis and glycogenesis, and sustained response of gluconeogenesis and extracellular glucose concentration (GLC ex ). Based on the experimental results, we constructed a simple computational model that characterises response of insulin‐signalling‐dependent glucose metabolism. The model revealed that the network motifs of glycolysis and glycogenesis pathways constitute a feedforward (FF) with substrate depletion and incoherent feedforward loop (iFFL), respectively, enabling glycolysis and glycogenesis responsive to temporal changes of insulin rather than its absolute concentration. In contrast, the network motifs of gluconeogenesis pathway constituted a FF inhibition, enabling gluconeogenesis responsive to absolute concentration of insulin regardless of its temporal patterns. GLC ex was regulated by gluconeogenesis and glycolysis. These results demonstrate the selective control mechanism of glucose metabolism by temporal patterns of insulin.  相似文献   

4.
We have modeled an experiment with perifused pancreatic islet cells using our BIOSSIM language. The experiment and the resulting model are concerned with glucose uptake and glycolysis by the beta-cells of pancreatic islets. Although glycolysis appears to be involved in insulin release, we do not have enough information to represent insulin release in detail. The rapid entry of glucose into the beta-cell is promoted by a carrier having a very high tissue capacity. Phosphorylation of glucose by the low affinity enzyme glucokinase appears to be limiting for glycolysis. The effects of several hexose diphosphate activators of phosphofructokinase are modeled. Model behavior is described. The kinetic parameters of the enzyme submodels are given. Because of the difficulties of preparing large amounts of experimental material, information on pancreatic islet metabolism is limited. This model is a plausible explanation of the experimental results. Recent work on the genetically engineered glucose transporter and glucokinase is discussed.  相似文献   

5.
1. The activities of glycolysis and K-+ transport have been studied in slices of Morris hepatoma 3924A incubated under anaerobic conditions in the presence of different concentrations of glucose (1-50 mM). 2. Ouabain-sensitive net transport of K-+ was observed at all glucose concentrations greater than 1 mM; ouabain reduced the rate of glycolysis by about 25% at all glucose concentrations able to support ion transport. 3. The net entry of glucose into the intracellular phase was studied at varying glucose concentrations. The rate of glucose entry was similar to the rate of glucose utilisation by anaerobic glycolysis at medium concentrations of 10 mM and less, but exceeded the rate of glycolysis at 20 mM and above. 4. The glucose entry was not Na-+-dependent and was not inhibited by ouabain. 5. The results suggest (a) that the reduction in glycolytic activity caused by ouabain is not due to an inhibition of glucose transport and (b) that the glucose transport system of this poorly differentiated hepatoma has properties similar to that of normal liver.  相似文献   

6.
Interleukin-1 beta (IL-1 beta) has been implicated in the pathogenesis of insulin-dependent diabetes mellitus. In the present study we have investigated the effects of IL-1 beta on glucose metabolism in clonal HIT-T15 beta cells. In the short-term (1 h), 25 U/ml IL-1 beta significantly increased the rates of insulin release and glucose utilisation, but not glucose oxidation. In contrast, after 48 h, IL-1 beta inhibited insulin release and glucose utilisation and oxidation. By assaying enzymes (hexokinase, glucokinase, pyruvate dehydrogenase, glucose 6-phosphatase) and nucleotides (ATP, ADP) associated with the regulation of glycolysis and glucose oxidation, we conclude that the inhibitory effects of IL-1 beta may be due to impaired glucokinase activity.  相似文献   

7.
In the present work we demonstrate that FT-IR spectroscopy is a powerful tool for the time resolved and noninvasive measurement of multi-substrate/product interactions in complex metabolic networks as exemplified by the oscillating glycolysis in yeast extract. We found that many of the glycolytic intermediates can be identified with FT-IR spectroscopy. For this, we have constructed a spectral library of most of the glycolytic intermediates and obtained the kinetics of single components in spectra from glycolysing yeast extract by the use of mathematical fitting procedures. The results are in good agreement with the known phase relationships of oscillatory glycolysis. They provide the basis for future application of this method to investigate the energy metabolism of living cells.  相似文献   

8.
The oxygen deficit at the onset of submaximal exercise represents a period when the energy demand of contraction cannot be met solely by mitochondrial ATP generation, and as a consequence there is an acceleration of ATP re-synthesis from oxygen-independent routes (phosphocreatine hydrolysis and glycolysis). Historically, the origin of the oxygen deficit has been attributed to a lag in muscle blood flow and oxygen availability at the onset of exercise which limits mitochondrial respiration. However, more recent evidence suggests that considerable inertia exists at the level of mitochondrial enzyme activation and substrate supply. In support of this latter hypothesis, we have reported on a number of occasions that pharmacological activation of the pyruvate dehydrogenase complex (and consequent stockpiling of acetyl groups), using dichloroacetate or exercise interventions, can markedly reduce the degree of ATP re-synthesis from oxygen-independent routes during the rest-to-work transition period. This review will focus on these findings, and will offer the hypothesis that acetyl group delivery to the tricarboxylic acid cycle limits mitochondrial flux at the onset of exercise--the so-called acetyl group deficit.  相似文献   

9.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   

10.
Kareva I 《PloS one》2011,6(12):e28576
As tumors outgrow their blood supply and become oxygen deprived, they switch to less energetically efficient but oxygen-independent anaerobic glucose metabolism. However, cancer cells maintain glycolytic phenotype even in the areas of ample oxygen supply (Warburg effect). It has been hypothesized that the competitive advantage that glycolytic cells get over aerobic cells is achieved through secretion of lactic acid, which is a by-product of glycolysis. It creates acidic microenvironment around the tumor that can be toxic to normal somatic cells. This interaction can be seen as a prisoner's dilemma: from the point of view of metabolic payoffs, it is better for cells to cooperate and become better competitors but neither cell has an incentive to unilaterally change its metabolic strategy. In this paper a novel mathematical technique, which allows reducing an otherwise infinitely dimensional system to low dimensionality, is used to demonstrate that changing the environment can take the cells out of this equilibrium and that it is cooperation that can in fact lead to the cell population committing evolutionary suicide.  相似文献   

11.
In spite of their chemical inertness, hydrocarbons are degraded by microorganisms in the complete absence of oxygen. As all known aerobic hydrocarbon degradation pathways start with oxygen-dependent reactions, hydrocarbon catabolism in anaerobes must be initiated by novel biochemical reactions. In recent years, the enzymes catalyzing oxygen-independent activation of several hydrocarbons have been identified. Surprisingly, a variety of reactions seems to be employed to overcome the activation barrier of different hydrocarbons. This review presents the current understanding on some of these reactions and the associated degradation pathways: oxygen-independent hydroxylation as employed in ethylbenzene metabolism, fumarate addition to methyl or methylene carbons in toluene or alkane degradation, and only recently discovered reactions such as methylation of naphthalene or anaerobic methane oxidation via reverse methanogenesis.  相似文献   

12.
The metabolic pathways of Acholeplasma and Mycoplasma: an overview   总被引:3,自引:0,他引:3  
The metabolism of the Mollicutes Acholeplasma and Mycoplasma may be characterized as restricted, for example, by virtue of the apparent absence of cytochrome pigments. Some Mollicutes have lowered ECA values during their logarithmic growth phase, which we speculate may be related to insufficient substrate phosphorylation or insufficient ATP synthesis linked to glycolysis. We found that PEP is carboxylated by preparations of A. laidlawii, but not by other Mollicutes; thus in this organism oxaloacetate from PEP may be a link to other pathways. We found phosphoribosylpyrophosphate in A. laidlawii, which suggests that ribosylation of purines and pyrimidines occurs in Mollicutes other than M. mycoides.  相似文献   

13.
The observation of oscillations in the concentrations of NADH and other intermediates in glycolysis in dense yeast cell suspensions is generally believed to be the result of synchronization of such oscillations between individual cells. The synchrony is believed to be a property of cell density and the question is: does metabolism in each individual yeast cell continue to oscillate, but out of phase, in the absence of synchronization? Here we have used high-sensitivity fluorescence microscopy to measure NADH in single isolated yeast cells under conditions where we observe oscillations of glycolysis in dense cell suspensions. However, we have not been able to detect intracellular oscillations in NADH in these isolated cells, which cannot synchronize their metabolism with other cells. However, addition of acetaldehyde to a single cell as pulses with a frequency similar to the oscillations in dense cell suspensions will induce oscillations in that cell. Ethanol, another product of glycolysis, which has been proposed as a synchronizing agent of glycolysis in cells, was not able to induce oscillations when added as pulses. The experiments support the notion that the intracellular oscillations are associated with the cell density of the yeast cell suspension and mediated by acetaldehyde and perhaps also other substances.  相似文献   

14.
In early studies on energy metabolism of tumor cells, it was proposed that the enhanced glycolysis was induced by a decreased oxidative phosphorylation. Since then it has been indiscriminately applied to all types of tumor cells that the ATP supply is mainly or only provided by glycolysis, without an appropriate experimental evaluation. In this review, the different genetic and biochemical mechanisms by which tumor cells achieve an enhanced glycolytic flux are analyzed. Furthermore, the proposed mechanisms that arguably lead to a decreased oxidative phosphorylation in tumor cells are discussed. As the O(2) concentration in hypoxic regions of tumors seems not to be limiting for the functioning of oxidative phosphorylation, this pathway is re-evaluated regarding oxidizable substrate utilization and its contribution to ATP supply versus glycolysis. In the tumor cell lines where the oxidative metabolism prevails over the glycolytic metabolism for ATP supply, the flux control distribution of both pathways is described. The effect of glycolytic and mitochondrial drugs on tumor energy metabolism and cellular proliferation is described and discussed. Similarly, the energy metabolic changes associated with inherent and acquired resistance to radiotherapy and chemotherapy of tumor cells, and those determined by positron emission tomography, are revised. It is proposed that energy metabolism may be an alternative therapeutic target for both hypoxic (glycolytic) and oxidative tumors.  相似文献   

15.
1. In a group of 23 obese women the relations between some indicators of thyroid function (thyroxine-binding globuline--T4BG, triiodothyronine-binding globuline--T3BG, Achilles tendon reflex--ART) on the one hand and activities of enzymes of the energy metabolism (hexokinase--HK, triose phosphate dehydrogenase--TPDH, lactate dehydrogenase--LDH, glycerol-3-phosphate dehydrogenase--GPDH, citrate synthease--CS, malate dehydrogenase--MDH, hydroxyacyl--COA dehydrogenase) in the quadriceps femoris muscle on the other hand were investigated. 2. Correlations were found between T4BG and TPDH, LDH and GPDH activities, between T3BG and TPDH and GPDH activities and between the value of the Achilles tendon reflex and TPDH activity. Functionally these enzymes activities are associated with glycolysis and hydrogen transport from cytoplasmatic NADH2. No correlations were found between enzymes of the aerobic metabolism incl. enzymes of fatty acid oxidation and indicators of thyroid function. 3. The results indicate a relationship between thyroid function and enzymes involved in glycolysis and hydrogen transport from cytoplasmatic NADH2. They do not suggest, however, the unequivocal conclusion that in obese women with reduced thyroid function there is a generally reduced energy supplying metabolism in skeletal muscle.  相似文献   

16.
17.
Abstract A number of bacteria were isolated from different anoxic reactors. Those having denitrifying potential were tested for their ability to denitrify under aerobic conditions. The activity of their denitrifying enzymes varied from partial inactivation by oxygen (strains NO2B9 and TCET1) to oxygen-independent activity in a strain named SGLY2 which was tentatively identified as Comamonas sp. The effect of different aeration conditions on growth and on denitrification of SGLY2 was studied more extensively. This strain was able to consume oxygen and nitrate simultaneously with the production of nitrogen and without build-up of nitrite. The dissimilatory nitrate-reductase of nitrate-adapted cells was found to be more active in the presence of oxygen than in micro-aerobic or strictly anaerobic conditions.  相似文献   

18.
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.  相似文献   

19.
The influence of physiological parameters such as carbon substrate flux and O2 uptake rates on energy metabolism are reported with reference to biomass productivity in whey chemostat culture. The combined results show that oxidoreductive energy metabolism may be attained independently of the yeast reaching its maximum respiratory capacity. A novel metabolic interpretation is presented proposing that a relative imbalance between glycolysis and subsequent oxidative steps alone is sufficient to account for the observed results. By means of a mathematical model the results could be reproduced under all experimental conditions. The new interpretation provides an insight into the manner in which energy mettbolism is regulated and influences growth-related process Kluyveromyces marxianus, as well as other yeasts with similar physiological characteristics. Correspondence to: J. I. Castrillo  相似文献   

20.
A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis–Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号