首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A flow injection analysis (FIA) system with a modified electrode has been developed and optimized for determination of l-glutamate using l-glutamate oxidase (GLOD) (EC 1.4.3.11). GLOD was immobilized on controlled-pore glass using glutaraldehyde. The optimal potential applied on the working electrode was +700mV against a platinum (Pt) reference electrode. The optimal pH and flow rate of the carrier buffer were 7.4 and 1.5ml/min, respectively. A modified electrode was integrated into the FIA system in order to eliminate electroactive interference and it was used to determine l-glutamate in 39 samples of Thai commercial soy sauce products. The results obtained were compared with those obtained from enzymatic assay using glutamate dehydrogenase and those from a chromatographic assay using an amino acid analyser. Good correlations were observed amongst these methods. The results indicated that use of an FIA system with a modified electrode was able to eliminate electroactive interference and was applicable to the determination of l-glutamate in food samples. The modified FIA was faster and simpler than the more common methods of enzymatic and chromatographic analysis.  相似文献   

2.
The rational selection of optimal protein purification sequences, as well as mathematical models that simulate and allow optimization of chromatographic protein purification processes have been developed for purification procedures such as ion-exchange, hydrophobic interaction and gel filtration chromatography. This paper investigates the extension of such analysis to affinity chromatography both in the selection of chromatographic processes and in the use of the rate model for mathematical modelling and simulation. Two affinity systems were used: Blue Sepharose and Protein A. The extension of the theory developed previously for ion-exchange and HIC chromatography to affinity separations is analyzed in this paper. For the selection of operations two algorithms are used. In the first, the value of η, which corresponds to the efficiency (resolution) of the actual chromatography and, Σ, which determines the amount of a particular contaminant eliminated after each separation step, which determines the purity, have to be determined. It was found that the value of both these parameters is not generic for affinity separations but will depend on the type of affinity system used and will have to be determined on a case by case basis. With Blue Sepharose a salt gradient was used and with Protein A, a pH gradient. Parameters were determined with individual proteins and simulations of the protein mixtures were done. This approach allows investigation of chromatographic protein purification in a holistic manner that includes ion-exchange, HIC, gel filtration and affinity separations for the first time.  相似文献   

3.
The high expression level of recombinant hepatitis B surface antigen obtained from Hansenula polymorpha yeast cell (Hans-HBsAg) made it possible to produce HBsAg vaccine in a large scale and by cost-effective process. However, the present available purification process was somewhat tedious, time-consuming and difficult to scale up. To improve the purification efficiency and simplify the purification process, an integrated chromatographic process was developed and optimized. The downstream process included ion-exchange chromatography (IEC), hydrophobic interaction chromatography (HIC) and gel filtration chromatography (GFC). A series of chromatographic adsorbents were evaluated for their performances on the purification of Hans-HBsAg, and then the suitable adsorbents for IEC and HIC were screened out, respectively. After clarification by centrifugation, the supernatant of cell disruption (SCD) was purified by standard chromatographic steps, IEC on DEAE Sepharose FF, HIC on Butyl-S-QZT and GFC on Sepharose 4FF. Furthermore, HBsAg recovery, purification factor (PF) and purity during the downstream process were evaluated with enzyme-linked immunosorption assay (ELISA), sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance size-exclusion chromatography (HPSEC). The results demonstrated that in the scale of 550ml SCD, the total HBsAg recovery and PF of the whole procedure were about 21.0+/-0.9% and 80.7+/-8.4 (n=3) respectively, with the purity of above 99%. This new downstream process was efficient, reproducible and relatively easy to be scaled up.  相似文献   

4.
A flow injection analysis (FIA) system was developed for the determination of cytoplasmic beta-galactosidase activity in recombinant Escherichia coli. The FIA system and its application for on-line monitoring of beta-galactosidase production during cultivation of recombinant E. coli in a 60-l airlift tower loop reactor is described. The results demonstrate that an FIA assay in conjunction with a cell disintegration step can be applied successfully for on-line monitoring of intracellular protein formation.  相似文献   

5.
Semi-purified DEN-4 envelope protein, obtained in Pichia pastoris, was capable of generating neutralising and protecting antibodies after immunisation in mice. Here we compared two purification processes of this recombinant protein using two chromatographic steps: immune-affinity chromatography and immobilised metal ion adsorption chromatography (IMAC). The protein purified by both methods produced functional antibodies reflected by titres of haemagglutination inhibition and neutralisation. IMAC could be used as an alternative for high scale purification.  相似文献   

6.
Clearance of aggregates during protein purification is increasingly paramount as protein aggregates represent one of the major impurities in biopharmaceutical products. Aggregates, especially dimer species, represent a significant challenge for purification processing since aggregate separation coupled with high purity protein recovery can be difficult to accomplish. Biochemical characterization of the aggregate species from the hydrophobic interaction and cation exchange chromatography elution peaks revealed two different charged populations, i.e. heterogeneous charged aggregates, which led to further challenges for chromatographic removal. This paper compares multimodal versus conventional cation exchange or hydrophobic chromatography methodologies to remove heterogeneous aggregates. A full, mixed level factorial design of experiment strategy together with high throughput experimentation was employed to rapidly evaluate chromatographic parameters such as pH, conductivity, and loading. A variety of operating conditions were identified for the multimodal chromatography step, which lead to effective removal of two different charged populations of aggregate species. This multimodal chromatography step was incorporated into a monoclonal antibody purification process and successfully implemented at commercial manufacturing scale. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:636–645, 2014  相似文献   

7.
Methods development in chromatographic purification processes is a complex operation and has traditionally relied on trial and error approaches. The availability of a large number of commercial media, choice of different modes of chromatography, and diverse operating conditions contribute to the challenging task of accelerating methods development. In this paper, we describe a novel microtiter-plate based screening method to identify the appropriate sequence of chromatographic steps that result in high purities of bioproducts from their respective culture broths. Protein mixtures containing the bioproduct were loaded on aliquots of different chromatographic media in microtiter plates. Serial step elution of the proteins, in concert with bioproduct-specific assays, resulted in the identification of "active fractions" containing the bioproduct. The identification of a successful chromatographic step was based on the purity of the active fractions, which were then pooled and used as starting material for screening the next chromatographic dimension. This procedure was repeated across subsequent dimensions until single band purities of the protein were obtained. The sequence of chromatographic steps and the corresponding operating conditions identified from the screen were validated under scaled-up conditions. Various modes of chromatography including hydrophobic interaction, ion exchange (cation and anion exchange) and hydrophobic charge-induction chromatography (HCIC), and different operating conditions (pH, salt concentration and type, etc.) were employed in the screen. This approach was employed to determine the sequence of chromatographic steps for the purification of recombinant alpha-amylase from its cell-free culture broth. Recommendations from the screen resulted in single-band purity of the protein under scaled-up conditions. Similar results were observed for an scFv-beta-lactamase fusion protein. The use of a miniaturized screen enables the parallel screening of a wide variety of actual bioprocess media and conditions and represents a novel paradigm approach for the high-throughput process development of recombinant proteins.  相似文献   

8.
A butan-1-ol solvent-extraction procedure has been evaluated for the assay of 3'-phosphoadenosine-5'-phosphosulfate:sulfotransferase activity with various bile salt and steroid substrates. Although butanol extracted the sulfate esters of steroids and bile salts from aqueous solution at neutral pH, extraction at basic pH gave optimum recovery which was independent of protein in the sample. Greater than 99.9% of unreacted 3'-phosphoadenosine-5'-phospho[35S]sulfate remained in the aqueous phase. The data for sulfotransferase activities obtained with this solvent-extraction assay were not significantly different from those obtained with a standard thin-layer chromatography method. Solvent extraction has enabled multiple, rapid assays of several steroid and bile salt sulfotransferases during chromatographic purification of these enzymes from tissue fractions.  相似文献   

9.
Development and implementation of a chaotropic wash step following protein loading on a hydrophobic interaction chromatographic (HIC) column is described for the purification of a recombinant protein. Various agents that reduce protein affinity in hydrophobic interaction chromatographic systems were screened for their utility in a wash step following protein loading on a Phenyl Fast Flow Sepharose HIC column. A combination of sodium thiocyanate, glycerol, and urea was selected as a suitable additive for the wash buffer that selectively eluted most of the major impurities present in the feed stream. Eluate purity, as monitored by reversed-phase chromatography and SDS-PAGE, was significantly increased by incorporation of this wash step in the purification process. Incorporation of this wash step on HIC enabled a reduction in the overall number of chromatographic steps in the downstream purification process for this recombinant protein, resulting in improved process yields and significant economic advantages.The effect of varying concentrations of each of the three wash additives on yield was studied. While the step yield decreased with an increase in concentration for urea and sodium thiocyanate, an optimum was observed with respect to glycerol concentration. The preferential interaction theory is employed to explain this effect.  相似文献   

10.
The purification of recombinant proteins for therapeutic or analytical applications requires the use of several chromatographic steps in order to achieve a high level of purity. A range of techniques is available such as anion and cation exchange chromatography, which can be carried out at different pHs, and hence used at different steps, hydrophobic interaction chromatography, gel filtration and affinity chromatography. Evidently when confronted with a complex mixture of partially unknown proteins or a clarified cell extract there are many different routes one can take in order to choose the minimum and most efficient number of purification steps to achieve a desired level of purity (e.g. 98, 99.5 or 99.9%). In this review we will show how an initial "proteomic" characterization of the complex initial mixture of target protein and protein contaminants can be used to select the most efficient chromatographic separation steps in order to achieve a maximum level of purity with a minimum number of steps. The chosen methodology was implemented in a computer based expert system. The first algorithm developed was used to select the most efficient purification method to separate a protein from its contaminants based on the physicochemical properties of the protein product and the protein contaminants. The second algorithm developed was used to predict the number and concentration of contaminants after each separation as well as protein product purity. The successful application of the expert system approach, based on an initial proteomic characterization, to the practical cases of protein mixtures and clarified fermentation supernatant is presented and discussed. The purification strategy proposed was experimentally tested and validated with a mixture of four proteins and the experimental validation was also carried out with an "unknown" supernatant of Bacillus subtilis producing a recombinant beta-1,3-glucanase. The system was robust to errors <10% which is the range that can be found in the experimental determination of the properties in the database of product and contaminants. On the other hand, the system was sensitive both to larger variations (>20%) in the properties of the contaminant database and the protein product and to variations in one protein property (e.g. hydrophobicity).  相似文献   

11.
A multi‐dimensional fractionation and characterization scheme was developed for fast acquisition of the relevant molecular properties for protein separation from crude biological feedstocks by ion‐exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and size‐exclusion chromatography. In this approach, the linear IEX isotherm parameters were estimated from multiple linear salt‐gradient IEX data, while the nonlinear IEX parameters as well as the HIC isotherm parameters were obtained by the inverse method under column overloading conditions. Collected chromatographic fractions were analyzed by gel electrophoresis for estimation of molecular mass, followed by mass spectrometry for protein identification. The usefulness of the generated molecular properties data for rational decision‐making during downstream process development was equally demonstrated. Monoclonal antibody purification from crude hybridoma cell culture supernatant was used as case study. The obtained chromatographic parameters only apply to the employed stationary phases and operating conditions, hence prior high throughput screening of different chromatographic resins and mobile phase conditions is still a prerequisite. Nevertheless, it provides a quick, knowledge‐based approach for rationally synthesizing purification cascades prior to more detailed process optimization and evaluation. Biotechnol. Bioeng. 2012; 109: 3070–3083. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The development of purification processes for protein biopharmaceuticals is challenging due to compressed development timelines, long experimental times, and the need to survey a large parameter space. Typical methods for development of a chromatography step evaluate several dozen chromatographic column runs to optimize the conditions. An efficient batch-binding method of screening chromatographic purification conditions in a 96-well format with a robotic liquid-handling system is described and evaluated. The system dispenses slurries of chromatographic resins into filter plates, which are then equilibrated, loaded with protein, washed and eluted. This paper evaluates factors influencing the performance of this high-throughput screening technique, including the reproducibility of the aliquotted resin volume, the contact time of the solution and resin during mixing, and the volume of liquid carried over in the resin bed after centrifugal evacuation. These factors led to the optimization of a batch-binding technique utilizing either 50 or 100 microL of resin in each well, the selection of an industrially relevant incubation time of 20 min, and the quantitation of the hold-up volume, which was as much as one quarter of the total volume added to each well. The results from the batch-binding method compared favorably to chromatographic column separation steps for a cGMP protein purification process utilizing both hydrophobic interaction and anion-exchange steps. These high-throughput screening tools can be combined with additional studies on the kinetics and thermodynamics of protein-resin interactions to provide fundamental information which is useful for defining and optimizing chromatographic separations steps.  相似文献   

13.
A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.  相似文献   

14.
Displacement chromatography of proteins was successfully carried out in both hydrophobic interaction and reversed-phase chromatographic systems using low-molecular weight displacers. The displacers employed for hydrophobic displacement chromatography were water soluble, charged molecules containing several short alkyl and/or aryl groups. Spectroscopy was employed to verify the absence of structural changes to the proteins displaced on these hydrophobic supports. Displacement chromatography on a reversed-phase material was employed to purify a growth factor protein from its closely related variants, demonstrating the high resolutions that can be achieved by hydrophobic displacement chromatography. This process combines the high-resolution/high-throughput characteristics of displacement chromatography with the unique selectivity of these hydrophobic supports and offers the chromatographic engineer a powerful tool for the preparative purification of proteins.  相似文献   

15.
Polyamine precipitation conditions for removing host cell protein impurities from the cell culture fluid containing monoclonal antibody were studied. We examined the impact of polyamine concentration, size, structure, cell culture fluid pH and ionic strength. A 96-well microtiter plate based high throughput screening method was developed and used for evaluating different polyamines. Polyallylamine, polyvinylamine, branched polyethyleneimine and poly(dimethylamine-co-epichlorohydrin-ethylenediamine) were identified as efficient precipitants in removing host cell protein impurities. Leveraging from the screening results, we incorporated a polyamine precipitation step into a monoclonal antibody purification process to replace the Protein A chromatography step. The optimization of the overall purification process was performed by taking the mechanisms of both precipitation and chromatographic separation into account. The precipitation-containing process removed a similar amount of process-related impurities, including host cell proteins, DNA, insulin and gentamicin and maintained similar product quality in respect of size and charge variants to chromatography based purification. Overall recovery yield was comparable to the typical Protein A affinity chromatography based antibody purification process.  相似文献   

16.
An on-line assay for a thermostable pullulanase and antithrombin III (AT III) is described. The assay is based on the formation of aggregates between the protein to be measured and antibodies raised against this protein. Assay automation was achieved by utilizing the flow injection analysis (FIA) principles. The apparatus, a stopped-flow, merging-zone manifold, is described in detail. Since the reaction used in an FIA system does not have to reach equilibrium, it was possible to reduce the time for an assay cycle to 2.5 min. A method for simulating cultivation conditions was developed for assay optimization. Using this method, a detection limit of I mg l−1 together with a standard deviation of 1.5 was found. A sandwich ELISA was used as reference assay in the case of AT III and an enzymatic activity assay in the case of pullulanase. Correlation coefficients of 0.988 (AT III) and 0.976 (pullulanase) were determined. The turbidimetric assay was successfully used for pullulanase monitoring during a 240-h cultivation of Clostridium thermosulfurogenes.  相似文献   

17.
Increasing therapeutic applications for recombinant human interferon-gamma (rhIFN-gamma), an antiviral proinflammatory cytokine, has broadened interest in optimizing methods for its production and purification. We describe a reversed phase chromatography (RPC) procedure using Source-30 matrix in the purification of rhIFN-gamma from Escherichia coli that results in a higher yield than previously reported. The purified rhIFN-gamma monomer from the RPC column is refolded in Tris buffer. Optimal refolding occurs at protein concentrations between 50 and 100 microg/ml. This method yields greater than 90% of the dimer form with a yield of 40 mg/g cell mass. Greater than 99% purity is achieved with further purification over a Superdex G-75 column to obtain specific activities of from 2 x 10(7) to 4 x 10(7)IU/mg protein as determined via cytopathic antiviral assay. The improved yield of rhIFN-gamma in a simple chromatographic purification procedure promises to enhance the development and therapeutic application of this biologically potent molecule.  相似文献   

18.
A new protein fusion system has been developed to generate free recombinant protein in a single affinity chromatographic step. The key component in the fusion is the catalytic core of sortase A from Staphylococcus aureus (SrtAc), which recognizes and cleaves the Thr-Gly bond at an LPXTG sequence with moderate activity. The fusion here consists of an N-terminal His6 tag, SrtAc, and an LPETG linker followed by protein of interest at the C-terminus. The fusion protein is expressed in Escherichia coli and purified by immobilized metal-ion affinity chromatography (IMAC). The immobilized fusion then undergoes on-column SrtAc-mediated cleavage at the LPETG site in the presence of Ca2+ and/or triglycine. The target protein with an extra N-terminal glycine is released from the fusion while the N-terminal portion remains bound to the column. Because the cleavage enzyme SrtAc is co-expressed as a fusion with the target protein, the purification system eliminates exogenous proteolysis. This purification approach is simple, robust, inexpensive, time saving, and allows purification of free recombinant protein via one-step chromatography.  相似文献   

19.
This paper describes the rapid purification by high-performance liquid chromatographic techniques of milligram quantities of the 7 S ribonucleoprotein complex (RNP 7 S) and its protein component from tench (Tinca tinca) oocyte extracts. High-performance gel permeation chromatography (with a TSK 3000SW column) was found to be unacceptable because of multiple contaminants which coelute with RNP 7 S. In contrast, semipreparative high-performance DEAE ion-exchange chromatography was found to give an excellent separation of the 7 S complex which could be directly adapted to a preparative scale providing rapid purification (less than 1 h) of milligram quantities of the complex. Agarose electrophoresis followed by specific staining of protein and nucleic acid was found to be a convenient and rapid means of evaluating the purification. Finally, reverse-phase high-performance liquid chromatography was found suitable for the purification of the protein component of the 7 S complex.  相似文献   

20.
Benzylpenicillin was clearly separated from benzylpenicilloic acid by ascending chromatography on a diethylaminoethyl cellulose paper using 0.1 M ammonium acetate as a solvent. Using this chromatographic system, penicillinase was assayed by measuring the formation of [14C]benzylpenicilloic acid from [14C]benzylpenicillin. This assay remedies the lack of specificity of the commonly used iodometric assays. Periplasmic penicillinase was released from Escherichia coli by suspension in a mixture of 1% phenethyl alcohol and 5 mM ethylenediaminetetraacetate (pH 7.0). This simple extraction method not only facilitates the assay of penicillinase in an E. coli culture, but will also be useful for large-scale purification of periplasmic penicillinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号