首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of human neutrophils by chemotactic peptides evokes a rapid change in membrane potential and an increase in cytoplasmic Ca2+ levels. These events are followed up to a minute later by detectable levels of microbicidal agents formed by the oxidative burst. Except for the latter, the sequence of events has remained unclear. We report here that a new fluorescent Ca2+ indicator developed by R. Tsien, Indo-1, has allowed us to resolve the temporal relationship between the rapid and transient cytoplasmic Ca2+ rise and the membrane potential change and to do so on very small samples by using a fluorescence-activated cell sorter. We have adapted a FACS 440 for simultaneous single cell membrane depolarization and cytoplasmic [Ca2+] detection in human neutrophils upon stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP). A membrane potential probe, dipentyloxacarbocyanine, allows us to determine that the membrane potential change is fMLP dose-dependent and apparently biphasic. The depolarization is maximal 40 s after stimulation. In contrast, cytosolic [Ca2+], while fMLP-dose dependent, is maximal at 10 s and already decreasing rapidly when the cell has reached its lowest potential. It can be measured with Indo-1 which has a fluorescence emission (lambda ex = 357 nm) maximum at 485 nm when Ca2+-free and 405 nm when Ca2+-liganded. The ratio of these fluorescences may then be calibrated in terms of cytoplasmic Ca2+ levels. Thus, Ca2+ release into the cytoplasm becomes the earliest evidence of neutrophil stimulation by fMLP and occurs in close association with an apparent membrane hyperpolarization.  相似文献   

2.
The signal transduction initiated by the human cytokine interleukin-8 (IL-8), the main chemotactic cytokine for neutrophils, was investigated and found to encompass the stimulation of protein kinases. More specifically, IL-8 caused a transient, dose and time dependent activation of a Ser/Thr kinase activity towards myelin basic protein (MBP) and the MBP-derived peptide APRTPGGRR patterned after the specific concensus sequence in MBP for ERK enzymes. The activated MBP kinase was furthermore identified as an extracellular signal regulated kinase (ERK1) based on several criteria such as substrate specificity, molecular weight, activation-dependent mobility shift, and recognition by anti-ERK antibodies. For comparison, the chemotactic response of neutrophils to a stimulus of bacterial origin (fMet-Leu-Phe or fMLP) was also examined and found to involve the activation of a similar ERK enzyme. The present data clearly indicate that in terminally differentiated, non-proliferating human cells, the MBP kinase/ERK activity can serve other purposes than mitogenic signaling, and that processes such as chemotaxis, induced by bacterial peptides as well as by human cytokines like IL-8, involve the regulation of ERK enzyme.Abbreviations IL-8 interleukin-8 - fMLP fMet-Leu-Phe - MBP myelin basic protein - ERK extracellular signal regulated kinase - MAP2 microtubule-associated protein 2 - PK-A cAMP dependent protein kinase - PKI protein kinase inhibitor - PMSF phenyl-methanesulfonyl fluoride - PVDF poly-vinylidene difluoride - HBSF Hank's buffered salt solution - DAB 3,3-diaminobenzidine tetrahydrochloride - PNPP p-nitrophenyl-phosphate - HSA human serum albumin - EGTA [ethylenebis (oxyethylenenitrilo)]tetraacetic acid - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

3.
Persistent elevations of cAMP levels are generally accompanied by an inhibition of granulocyte functions. Phosphodiesterases play a critical role in regulating intracellular levels of cAMP. The expression of three isoforms of type 4 cAMP-specific phosphodiesterase (PDE4) in neutrophils suggests diversity of isoform localization and targeting in regulating cell function. The sites of cAMP regulation in granulocytes by the PDE4A isoform were investigated by immunoelectron microscopy. PDE4A was localized uniformly in all granule classes of eosinophils, but was restricted in neutrophils to a subset of myeloperoxidase (MPO)-containing granules that were round or elongated with a central crystalloid core. Granulocytes were stimulated with fMLP to investigate the sites of PDE4A targeting during cell activation. In neutrophils, fMLP induced a rapid (1 min) translocation of granules containing PDE4A to the plasmalemma, where some PDE4A and MPO were exocytosed. In these cells, PDE4A labeling within granules was focal and no longer homogeneous. While immunogold labeling of PDE4A was reduced after fMLP stimulation, staining of MPO-containing granules remained high. Extracellular release of PDE4A was also observed in eosinophils stimulated with fMLP. Morphometry revealed that Au labeling was significantly reduced within 1 min, and that there was a shift in PDE4A localization within eosinophil granules from the crystalline core to the matrix. Fluctuations of cAMP levels and ectoprotein kinase activity with PKA properties occur in blood under normal and pathological conditions. The exclusive localization of PDE4A within granules of neutrophils and eosinophils suggests that PDE4A may function to downregulate cAMP signaling at the cell membrane and/or in the extracellular space at the time of granule release.  相似文献   

4.
Spreading of neutrophils on protein-coated surfaces is a pivotal event in their ability to respond to soluble, physiologic agonists by releasing large amounts of hydrolases and oxidants. Using neutrophils plated on serum-, fibrinogen- or fibronectin-coated surfaces, we investigated the effect of human serum albumin (HSA) on spreading- dependent neutrophil responses. HSA suppressed the respiratory burst of neutrophils in response to tumor necrosis factor-alpha (TNF), complement component C5a or formylated peptide, but not phorbol myristate acetate. HSA was suppressive only if added before the onset of the respiratory burst, and suppression was reversed when HSA was removed. Likewise, HSA selectively and reversibly inhibited TNF-induced cell spreading and the associated fall in cAMP. However, HSA did not hinder TNF-induced cell adherence to the same protein-coated surfaces. We investigated cell surface sialoproteins as modulators of cell spreading and as targets for the anti-spreading action of HSA. Oxidation of the cell surface with periodate followed by reduction with 3H-borohydride and immunoblotting with specific mAbs helped identify the predominant sialoprotein on human neutrophils as CD43 (sialophorin, leukosialin). Treatment of neutrophils with C. perfringens sialidase desialylated CD43, markedly enhanced the ability of the cells to respond to TNF by spreading and undergoing a respiratory burst, and antagonized the ability of HSA to inhibit these responses. TNF-treated, adherent neutrophils shed CD43, and this was blocked by HSA, but not by ovalbumin. Exogenous neutrophil elastase removed CD43 from the neutrophil surface. HSA blocked the actions of both sialidase and elastase on CD43. In contrast, ovalbumin did not block the action of sialidase on CD43, and HSA did not inhibit the ability of sialidase to hydrolyze a synthetic substrate. These results suggested that HSA might bind CD43. In fact, the extracellular portion of CD43 bound to HSA- Sepharose, but not to ovalbumin- or glycylglycine-Sepharose. Finally, two mAbs recognizing different epitopes on CD43 mimicked HSA's inhibitory effects on neutrophil function. Thus, HSA can dissociate attachment of neutrophils from spreading. This dissociation may help neutrophils migrate along a chemotactic gradient, while decreasing their release of oxidants. CD43, a long, rigid molecule with a markedly negative charge, antagonizes neutrophil spreading. HSA appears to inhibit spreading-dependent neutrophil functions by binding to CD43 and interfering with the ability of neutrophils to shed it.  相似文献   

5.
Changes in the state of actin in rat neutrophils were studied after chemotactic peptide and concanavalin A stimulation by using the DNase I inhibition assay. Actin polymerization occurred within seconds after stimulation with F-Met-Leu-Phe and concanavalin A. Pretreatment of cells with cytochalasin D prevented chemotactic peptide-induced actin polymerization. The addition of F-Met-Leu-Phe to lysed cells did not produce any change in actin state. These data offer strong evidence for receptor-induced actin polymerization and support the models implicating actin microfilament formation as a crucial event in cell activation. The observations on platelets, lymphocytes, neutrophils, and islets of Langerhans from different species suggest that actin polymerization might be a universal intracellular event accompanying cell surface receptor perturbation in eukaryotic cells.  相似文献   

6.
The N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-OMe (1) analogues for-Thp-Leu-Ain-OMe (2), for-Thp-Leu-Phe-OMe (3), for-Met-Leu-Ain-OMe (4), for-Met-Delta(z)Leu-Phe-OMe (5), for-Met-Lys-Phe-For-Met-Lys-Phe (6), for-Met-Leu-Pheol-COMe (7), and for-Nle-Leu-Phe-OMe (8) have been studied. Some of these have been found selective towards the activation of different biological responses of human neutrophils. In particular, peptides 2 and 3, which evoke only chemotaxis, are ineffective in enhancing inositol phosphate, as well as cyclic AMP (cAMP) levels. On the contrary, analogues 5 and 7, which induce superoxide anion production and degranulation, but not chemotaxis, significantly increase the levels of the two intracellular messengers, as is the case of the full agonists 1 and 6. The Ca(2+) ionophore A23187 also activates phospholipase C (PLC) and increases the nucleotide levels; when tested in combination with peptide 1 or 5, a supra-additive enhancement of cAMP concentration is obtained. The PLC blocker, U-73122, inhibits the formylpeptide-induced inositol phosphate formation, as well as cAMP increase. Moreover, this drug drastically reduces superoxide anion release triggered by 1 or 5, whereas it inhibits to a much lesser extent neutrophil chemotaxis induced by 1 or 2. Our results suggest that: (i) PLC stimulation is involved in cAMP enhancement by formylpeptides; (ii) the activation of PLC by formylpeptides, in conditions of increased Ca(2+) influx, induces a supra-additive enhancement of the nucleotide; (iii) the inability of pure chemoattractants to significantly alter the PLC activity or cAMP level, differently from full agonists or peptides specific in inducing superoxide anion release, appears as a general property. Thus, the activation of neutrophil PLC seems essential for superoxide anion release, but less involved in the chemotactic response.  相似文献   

7.
Human neutrophilic polymorphonuclear leukocytes (PMN) stimulated with N'-formyl-methionyl-leucyl-phenylalanine (FMLP) in the presence of cytochalasin B but in the absence of human serum albumin (HSA) synthesized only small amounts of platelet-activating factor (PAF) that attained maximum levels within 60-120 s after stimulation; in addition, no release of PAF occurred. However, in the presence of 2.5 mg HSA/ml, there was a threefold increase in PAF synthesis, 30-40% of which was released within 5 min after FMLP stimulation. In the presence of 50 mg HSA/ml there was at least a fourfold increase in PAF synthesis and release, with maximal synthesis occurring 10-20 min after stimulation. Thus, the presence of HSA during PMN stimulation not only induced an albumin dose-dependent increase in PAF release but significantly augmented the synthesis of PAF. In contrast to PAF synthesis and release, the presence or absence of HSA had no effect upon lysosomal enzyme secretion from FMLP-stimulated PMN, which was maximal within 30-60s after stimulation. These results demonstrate that HSA plays an essential role in vitro in the synthesis and release of PAF from human PMN, and support the hypothesis that there is a cyclic PAF synthesis-release coupling mechanism in the stimulated human PMN.  相似文献   

8.
We examined the potential role of fibronectin in chemotactic factor stimulation of neutrophil adherence to plastic. Monoclonal antibody to human fibronectin significantly reduced chemotactic peptide stimulation of adherence but did not reduce adherence stimulated by phorbol myristate acetate or aggregation stimulated by either agent. Stimulation of neutrophils by chemotactic peptide was also associated with loss of cell surface fibronectin detected by immunofluorescence or binding of radiolabeled collagen. These data suggest that chemotactic peptides stimulate neutrophils to release Fn and that Fn mediates the attachment of neutrophils to plastic surfaces.  相似文献   

9.
A range of chemotactic factors has been shown to affect the adhesion of rabbit peritoneal neutrophil granulocytes to cultured endothelial cells and to serum-coated glass. At chemotactically optimal concentrations, αs-casein, β-casein, alkali denatured human serum albumin (HSA) and several synthetic formyl-peptides reduced the number of adherent neutrophils after 30 min to around 50% of control values. These effects were still observed after neutrophils, but not endothelium or serum-coated glass had been exposed to chemotactic factors and washed before use in assays. Two non-chemotactic analogues, native HSA and a non-formyl-peptide were ineffective. The dose responses for adhesion after 30 min in the presence of αs-casein and formyl-methionyl-leucyl-phenylalanine (FMLP) were found to be inversely related to those for migration towards these substances. After incubation for 60 min in high (10?8–10?7 M) concentrations of FMLP, neutrophil adhesion was found to be enhanced. Neutrophil aggregation was also affected by the presence of chemotactic factors in a similar time- and dose-dependent manner to the adhesion to substratum assays. Using FMLP, it was also shown that the timing of the adhesive changes depended on the concentration of chemotactic factor present.  相似文献   

10.
Neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells, which regulate cell migration in a chemotactic gradient field. We have previously shown that ATP release via pannexin 1 (PANX1) channels and autocrine stimulation of P2Y2 receptors contribute to the excitatory signals at the front. Here we show that PANX1 also contributes to the inhibitory signals at the back, namely by providing the ligand for A2A adenosine receptors. In resting neutrophils, we found that A2A receptors are uniformly distributed across the cell surface. In polarized cells, A2A receptors redistributed to the back where their stimulation triggered intracellular cAMP accumulation and protein kinase A (PKA) activation, which blocked chemoattractant receptor signaling. Inhibition of PANX1 blocked A2A receptor stimulation and cAMP accumulation in response to formyl peptide receptor stimulation. Treatments that blocked endogenous A2A receptor signaling impaired the polarization and migration of neutrophils in a chemotactic gradient field and resulted in enhanced ERK and p38 MAPK signaling in response to formyl peptide receptor stimulation. These findings suggest that chemoattractant receptors require PANX1 to trigger excitatory and inhibitory signals that synergize to fine-tune chemotactic responses at the front and back of neutrophils. PANX1 channels thus link local excitatory signals to the global inhibitory signals that orchestrate chemotaxis of neutrophils in gradient fields.  相似文献   

11.
Incubation of pulmonary alveolar macrophages (PAM) with the synthetic chemotactic tripeptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP) results in deactivation of PAM chemotaxis. The chemotactic response to 10(-8) M FMLP was inhibited 85% after 30 min of preincubation with 10(-6) M FMLP and 48% by 10(-8) M FMLP. Only the higher dose of FMLP (10(-6) M) caused deactivation of the chemotactic response to C5a (20%). Preincubation with partially purified C5a at a concentration of 100 microliter/ml produced a 32% inhibition of the PAM response to 10(-8) M FMLP. In contrast, preincubation with FMLP had no significant effect on superoxide generation, either at baseline or after stimulation. Levels of intracellular cyclic adenosine-3',5'-monophosphate (cAMP) increased in response to PGE1 in the presence of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, but FMLP failed to induce a change in cAMP levels. Studies of 3H-FMLP binding were consistent with two populations of membrane receptors with different affinities. Preincubation of PAM with FMLP did not result in a reduction of maximal binding. We conclude that FMLP induces deactivation of PAM chemotaxis, but cross-deactivation occurs only after high dose treatment. Unlike the PMN, macrophage chemotactic activation is not accompanied by an elevation in cAMP levels. These observations suggest that PAM chemotaxis is influenced by prior exposure to chemotactic stimuli, but other aspects of the PAM response diverge from that of PMN. The mechanism of deactivation of PAM does not appear to result from a shift in the dose-response curve or decreased availability of membrane receptors, but may involve uncoupling of post-receptor cellular responses.  相似文献   

12.
We used 31P-NMR spectroscopy to investigate the response of living C6 glioma cells to stimulation by a beta-adrenergic agonist, isoproterenol. In the presence of 3-isobutyl-1-methylxanthine, stimulation induced an accumulation of cAMP, making possible the NMR detection of the second messenger in living cells grown on microcarrier beads and perfused in the NMR tube. The cAMP signal rose to a maximum level within 20-25 min of stimulation; thereafter it decreased to the detection threshold within 60 min. At the same time, 40% increases of phosphomonoester and diphosphodiester signals were observed, whereas no significant change in phosphocreatine and nucleotide signals was detected. The kinetics of changes of the cellular content in phosphorylated metabolites were analyzed after recording 31P-NMR spectra of cell perchloric acid extracts as a function of time of stimulation. cAMP accumulation in stimulated cells was evidenced by a near linear increase of its NMR signal as a function of incubation time (from 0 to 60 min). Concomitantly with the production of cAMP, the data showed 30% decreases of phosphocreatine and ATP levels within 60 min of stimulation, and an unexpected redistribution of pyrimidine and purine nucleoside triphosphates. At the same time, levels of phosphomonoesters (phosphorylcholine and phosphorylethanolamine) and phosphodiesters (glycerophosphorylcholine and glycerophosphorylethanolamine) rose (50% increase). 13C-NMR spectra of cell perchloric acid extracts prepared after isoproterenol stimulation of cells incubated in the presence of [1-13C]glucose indicated a higher glucose content in stimulated cells, whereas the resonance of ribose C1 was diminished. Moreover, the resonances of C1 of ethanolamine and choline (and their derivatives) were increased in spectra of stimulated cells, whereas that of C3 of serine was decreased. In addition, the 13C-NMR data indicated that neither the pattern of glutamate carbon enrichment nor the glutamate/glutamine ratio was modified in stimulated cells. On the other hand, the heteronuclear coupling pattern of the lactate (methyl group) resonance in 1H-NMR spectra of cell incubation media indicated that no change occurred in the carbon flux through the pentose-phosphate shunt under stimulation. The results of this multinuclear NMR approach are discussed in terms of metabolic responses of C6 cells to beta-adrenergic stimulation and cAMP overproduction.  相似文献   

13.
Pertussis toxin treatment of rabbit peritoneal neutrophils causes a concentration-dependent inhibition of granule enzyme secretion induced by formylmethionyl-leucyl-phenylalanine, C5a, and leukotriene B4. It also inhibits chemotaxis induced by formylmethionyl-leucyl-phenylalanine. The same toxin treatment, however, has no effect on granule enzyme secretion induced by the calcium ionophore A23187 or phorbol 12-myristate 13-acetate. Moreover, pertussis toxin treatment does not affect either the number or affinity of the formylpeptide receptors on the neutrophil nor does it have any effect on the unstimulated levels of cyclic AMP (cAMP) or the transient rise in cAMP induced by chemotactic factor stimulation in these cells. We hypothesize that pertussis toxin, as in other cells, interacts with a GTP binding regulatory protein identical with or analogous to either Ni or transducin which mediates the receptor-induced inhibition or activation of a target protein or proteins required in neutrophil activation. The nature of the target protein is unknown, but it is not the catalytic unit of adenylate cyclase. The target protein acts after binding of chemotactic factor to its receptor in the sequence that leads to the receptor-induced rise in intracellular Ca2+. It does not affect the responses elicited by the direct introduction of calcium into the cells or the activity of protein kinase C.  相似文献   

14.
Recently our laboratory has shown that neutrophils contain enzymatic activity within their lysosomal granules which will generate chemotactic activity for neutrophils and tumor cells from the fifth component of complement (C5). We have now expanded this initial observation and have demonstrated that eosinophils can release enzymatic activity from their lysosomal granules upon stimulation with immune complexes or opsoninized zymosan, but not with C5a or synthetic chemotactic peptides. Furthermore, the enzymatic activity released from the eosinophil lysosomal granules can cleave C5 into eosinophil-specific chemotactic activity. The generation of the eosinophil chemotactic activities from C5 is blocked by prior treatment of the eosinophil preparations with a number of protease inhibitors. The eosinophil-derived C5 cleaving activity possesses a pH optimum of 7.2, thus suggesting the enzymatic activity is a neutral protease. The demonstration that enzyme activities derived from eosinophils have the ability to generate eosinophil chemotactic factor(s) from C5 may explain why eosinophils are the predominant inflammatory cell in both nasal polyps and in the nasopharynx and bronchi of patients with allergic conditions such as hay fever and asthma.  相似文献   

15.
Following an intravenous injection of 100 micrograms hCRH a facial flushing can frequently be observed along with respiratory stimulation. Both effects can be mediated by a common transmitter. Serotonin is well known to produce facial flush as well as to modulate respiration. In order to clarify is serotonin is a common mediator for facial flush and respiratory stimulation after i.v. application of hCRH, we studied the time course of facial skin temperatures and respiratory stimulation after intravenous injection of 100 micrograms hCRH in 10 healthy subjects. Furthermore, we measured respiratory stimulation after i.v. administration of 100 micrograms hCRH in 10 healthy subjects pretreated with the serotonin antagonist cyproheptadine. Facial skin temperatures reached maximum levels 9 min after CRH administration and remained raised for more than 60 min. Respiratory stimulation occurred within the first minute after CRH administration and reached a maximum during the second minute, but could no longer be observed after 10 min. Serum serotonin levels did not change after CRH stimulation in doses up to 3 micrograms/kg body weight), and cyproheptadine did not abolish the respiratory stimulation effect of hCRH in a dosage sufficient to suppress CRH.-induced cortisol secretion.  相似文献   

16.
The role of PI(3,4,5)P(3) in Dictyostelium signal transduction and chemotaxis was investigated using the PI3-kinase inhibitor LY294002 and pi3k-null cells. The increase of PI(3,4,5)P(3) levels after stimulation with the chemoattractant cAMP was blocked >95% by 60 microM LY294002 with half-maximal effect at 5 microM. This correlated well with the inhibition of the membrane translocation of the PH-domain protein, PHcracGFP. LY294002 did not reduce cAMP-mediated cGMP production, but significantly reduced the cAMP response up to 75% in wild type and completely in pi3k-null cells. LY294002-treated cells were round, not elongated as control cells. Interestingly, cAMP induced a time and dose-dependent recovery of cell elongation. These elongated LY294002-treated wild-type and pi3k-null cells exhibited chemotactic orientation toward cAMP that is statistically identical to chemotactic orientation of control cells. In control cells, PHcrac-GFP and F-actin colocalize upon cAMP stimulation. However, inhibition of PI3-kinases does not affect the first phase of the actin polymerization at a wide range of chemoattractant concentrations. Our data show that severe inhibition of cAMP-mediated PI(3,4,5)P(3) accumulation leads to inhibition of cAMP relay, cell elongation and cell aggregation, but has no detectable effect on chemotactic orientation, provided that cAMP had sufficient time to induce cell elongation.  相似文献   

17.
The interaction between prostaglandin E1 (PGE1) and chemotactic peptide formylmethionyl-leucyl-phenylalanine (fMLP) in cAMP production in guinea pig neutrophils was investigated. Both PGE1 and fMLP increased the cAMP content in neutrophils. At low concentrations of PGE1 (less than 10 nM), the effects of fMLP and PGE1 in stimulating cAMP accumulation were additive, but at high concentrations of PGE1, their effects were synergistic. The effects of PGE1 and Ca2+ ionophore A23187 instead of fMLP on cAMP accumulation were also synergistic. The synergy did not appear to be related to change in cyclic nucleotide phosphodiesterase activity, because it was still marked in the presence of isobutyl-3-methyl-1-xanthine, a phosphodiesterase inhibitor. Studies on the time course of PGE1-induced cAMP accumulation showed that cAMP production ceased within 5 min after the addition of high concentrations of PGE1. The period of cAMP production could not be prolonged by combined treatment with PGE1 and fMLP or Ca2+ ionophore A23187. The synergy was found to be caused through Ca2+-dependent processes, because depletion of the medium of Ca2+ and addition of the Ca2+ antagonist TMB-8 inhibited the synergistic increase in cAMP. Moreover, the calmodulin antagonist W-7 also effectively inhibited the synergistic increase in cAMP. These results suggest that the potentiation of PGE1-induced cAMP production by fMLP or Ca2+ ionophore A23187 is catalyzed by calmodulin-dependent processes. However, the synergistic increase in cAMP production was not inhibited by arachidonic acid cascade inhibitors such as indomethacin, BW755C, or nordihydroguiaretic acid, and a combination of PGE1 and a protein kinase C activator, tetradecanoyl phorbol acetate (TPA), did not cause synergistic increase in cAMP. Marked increase in cAMP was also induced by a combination of cholera toxin and fMLP or Ca2+ ionophore A23187, but not by a combination of forskolin and fMLP or Ca2+ ionophore A23187. The synergistic increase in cAMP was not sustained in isolated membranes. On the contrary, PGE1-induced cAMP production in isolated membranes was suppressed by their pretreatment with fMLP or Ca2+ ionophore A23187. These data suggest that the synergistic effects of PGE1 and fMLP or Ca2+ ionophore in increasing the cAMP level are due to potentiation of PGE1-induced cAMP production by Ca2+ and calmodulin-dependent processes.  相似文献   

18.
Pituitary and gonadal function during physical exercise in the male rat   总被引:16,自引:0,他引:16  
The effects of training and acute exercise on serum testosterone, luteinizing hormone (LH) and corticosterone levels and on testicular endocrine function in male rats were studied. In the first part of the study, the rats were trained progressively on a treadmill, over 8 weeks. Training did not change the basal levels of serum testosterone, LH and corticosterone, or the testicular concentrations of testosterone and its precursors progesterone and androstenedione. The levels of testicular LH (30.3 +/- 2.6 ng/g wet wt, mean +/- SEM) and lactogen (150 +/- 14 pg/g) receptors were unchanged after training. However, the capacity of testicular interstitial cell suspensions to produce cAMP and testosterone increased by 20-30% during in vitro gonadotropin stimulation. In the second part, the trained and untrained control animals underwent acute exhaustive exercise. Serum testosterone levels decreased by 74 and 42% in trained and untrained rats, respectively (P less than 0.02), and corticosterone rose by 182% in trained and 146% in untrained rats (P less than 0.01), whereas the LH level was unchanged. Testicular levels of testosterone and its precursors decreased, with the exception of unchanged androstenedione, in trained rats; the cAMP concentration was unchanged. In both trained and untrained rats, acute exercise decreased the capacity of interstitial cell suspensions to produce cAMP, whereas there were no consistent effects on testosterone production. Acute exercise had no effect on LH or lactogen receptors in testis tissue. In conclusion, training had no effect on serum or testicular androgen concentrations, but increased Leydig cell capacity to produce testosterone and cAMP. Acute exercise decreased serum and testicular testosterone concentrations without affecting serum LH. A direct inhibitory effect of the increased serum corticosterone level on the hypothalamic-pituitary level and/or testis may be the explanation for this finding.  相似文献   

19.
Levamisole at concentrations of 10(-3) M or 10(-4) M consistently increased neutrophil random motility and chemokinesis (stimulated random migration). Similar concentrations also increased directional movement of polymorphonuclear leukocytes to both endotoxin-activated serum and hydrolyzed casein. This effect on chemotaxis was due to a true stimulation and was not due solely to increased random movement. The effect of levamisole on the neutrophils could be removed by washing, but persisted if the cells were initially treated with levamisole and serum or endotoxin-activated serum. After neutrophil stimulation with chemotactic factor an initial rise in intracellular cyclic AMP levels was detected which was not influenced by prior levamisole treatment. Intracellular cyclic GMP levels after an initial slight depression, returned to resting levels and gradually diminished over a 60-minute period. Levamisole-treated cells consistently showed higher cyclic GMP levels and it is postulated that by maintaining intracellular cyclic GMP levels, microtubular assembly and cell motility might be enhanced.  相似文献   

20.
Scanning electron microscopy (EM) and cytochemical techniques were used to examine the alkaline phosphatase-containing compartment in human neutrophils after stimulation with nanomolar concentrations of N-formylmethionyl-leucyl-phenylalanine (10–8M fMLP). Alkaline phosphatase (AlkPase) activity was demonstrated with a lead-based metal capture cytochemical method. The reaction product was visualized with the backscattered electron imaging mode of scanning EM, and analyzed by electron probe X-ray microanalysis. Alkaline phosphatase activity was detected only in fMLP-stimulated neutrophils; unstimulated neutrophils displayed no activity. Stimulation of human neutrophils with 10–8 M fMLP induced a time-dependent intracellular redistribution of irregular round or tubular granules containing alkaline phosphatase activity, as seen by backscattering. The intracellular redistribution of alkaline phosphatase activity was accompanied by increased cytochemical activity on the cell surface. The reaction product was localized preferentially on ridges and folds of polar neutrophils. Reorganization of the AlkPase-containing compartment correlated with changes induced by fMLP in cell shape, ie, membrane ruffling and front-tail polarity, as observed with the secondary electron image mode of scanning EM. These findings demonstrate the intracellular reorganization, increase, and asymmetric distribution of alkaline phosphatase activity on the plasma membrane of human neutrophils after stimulation by chemotactic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号