首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alkali 1-type isoforms of myosin essential light chains from vertebrate striated muscles have an additional 40 or so amino acids at their N terminus compared with the alkali 2-type. Consequently two light chain isoenzymes of myosin subfragment-1 can be isolated. Using synthesized peptide mimics of the N-terminal region of alkali 1-type essential light chains, we have found by 1H NMR that the major actin binding region occurred in the N-terminal four residues, APKK. These results were confirmed by mutating this region of the human atrial essential light chain, resulting in altered actin-activated MgATPase kinetics when the recombinant light chains were hybridized into rabbit skeletal subfragment 1. Substitution of either Lys3 or Lys4 with Ala resulted in increased Km and kcat and decreased actin binding (as judged by chemical cross-linking). Replacement of Lys4 with Asp reduced actin binding and increased Km and kcat still further. Alteration of Ala1 to Val did not alter the kinetic parameters of the hybrid subfragment 1 or the essential light chain's ability to bind actin. Furthermore, we found a significant correlation between the apparent Km for actin and the kcat for MgATP turnover for each mutant hybrid, strengthening our belief that the binding of actin by alkali 1-type essential light chains results directly in modulation of the myosin motor.  相似文献   

2.
To elucidate the difference between subfragment-1 and heavy meromyosin in their interaction with F-actin, we used limited tryptic digestion and cross-linking with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The binding of actin to subfragment-1 lowers the susceptibility of the 50K-20K junction of its heavy chain to tryptic digestion. At a molar ratio of one actin to one subfragment-1, all the sites were gradually cleaved by trypsin whereas the sites were completely protected in the presence of a 2-fold molar excess of actin over subfragment-1. In the case of heavy meromyosin, nearly half of the sites were protected completely by the presence of an equimolar amount of actin to its heads suggesting that the two heads of heavy meromyosin bound actin in a different manner. The rate of the cross-linking reaction between subfragment-1 heavy chain and actin with 1-ethyl-3-[3-(dimethylamino) propyl]carbodiimide also depended on the molar ratio of actin to subfragment-1. The rate was maximum at a molar ratio of about 5 actin to 1 subfragment-1. When heavy meromyosin was cross-linked to actin, the maximum rate was observed at a molar ratio of about 3 actin to 1 heavy meromyosin head, the level being about 60% that for subfragment-1 and actin. It was suggested that the presence of the subfragment-2 portion of heavy meromyosin caused these differences by restricting the motion of the two heads.  相似文献   

3.
At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).  相似文献   

4.
The binding of one of the alkali light chains of myosin, A1, with the isolated renatured 20-kDa fragment of myosin subfragment-1 heavy chain was demonstrated by means of difference UV absorption spectroscopy. The difference spectrum with either rabbit or chicken A1 showed two characteristic peaks at 279 and 287 nm indicating a perturbation of tyrosyl chromophores by the association with the 20-kDa fragment. The delta epsilon at 287 nm increased with an increase in the molar ratio of A1/20-kDa fragment and reached a maximum value at around equimolar ratio. The maximum delta epsilon value was approximately three times larger with rabbit A1 than with chicken A1. Based on the positions of Tyr residues in the amino acid sequences, the contact surface of A1 with myosin heavy chain was concluded to be spread over a large area of A1. The binding of 20-kDa fragment with F-actin was measured by following the increase in turbidity. The affinity appeared to increase several times in the presence of A1. A1 may possibly control the affinity of myosin for actin.  相似文献   

5.
The heavy chain of myosin subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96 K. It was split into 26 K, 50K, and 21 K fragments on trypsin treatment. The effect of actin binding on the susceptibilities of the junctions between 26 K and 50 K and between 50 K and 21 K, and on that of alkali light chain 1 to trypsin was studied. The addition of actin increased the viscosity of the solution, and the apparent activity of trypsin decreased. We estimated this decrease as 35% by measuring the degradation of gamma-globin heavy chain, which is known not to interact with actin and subfragment-1 but is known to be susceptible to trypsin, in actin-subfragment-1 solution. Taking this value into consideration, we concluded that the 26 K-50 K junction became 5 times more and the 50 K-21 K junction became 3 times less susceptible to tryptic attack upon the binding of actin. We also observed that alkali light chain 1 became resistant to trypsin upon the binding of actin to subfragment-1. The relation between this conformational change in subfragment-1 and the cyclic interaction of subfragment-1 with actin and ATP is discussed.  相似文献   

6.
Myosin subfragment 1 (S-1) can be fractionated into two isozymes, (A1)S-1 containing alkali light chain 1 and (A2)S-1 containing alkali light chain 2. The predominant difference in the behavior of the two isozymes of S-1 is that, at low ionic strength, the actin concentration required for half-maximal ATPase activity is considerably lower for (A1)S-1 than for (A2)S-1; that is, the apparent binding constant KATPase for (A1)S-1 is greater than KATPase for (A2)S-1 [Weeds, A.G., & Taylor, R.S. (1975) Nature (London) 257, 54-56]. This difference disappears at high ionic strength [Wagner, P. D., Slater, C. S., Pope, B., & Weeds, A.G. (1979) Eur. J. Biochem. 99, 385-394]. In the present study we investigated whether the difference in the KATPase values of (A1)S-1 and (A2)S-1 is due to a difference in the actual affinity of these S-1 isozymes for actin. Binding was measured in the presence of ATP and AMP-PNP and in the absence of nucleotide at varied ionic strengths. We found that at low ionic strength where KATPase is several times stronger for (A1)S-1 than for (A2)S-1, the binding of (A1)S-1 to actin is correspondingly stronger than that of (A2)S-1 irrespective of the nucleotide present. Furthermore, as the ionic strength is increased, just as the difference between the KATPase values for (A1)S-1 and (A2)S-1 disappears so too does the difference in the affinity of the two isozymes for actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To determine the reason why the Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin was activated more by actin than that of subfragment-1 prepared with trypsin was and the reason why the former could enhance the polymerization of actin and the latter could not, we digested subfragment-1, prepared with chymotrypsin, with trypsin and examined the actin activated Mg2+-ATPase activity and the ability to polymerize actin. It was found that cleavage of the heavy chain decreased the actin activated Mg2+-ATPase activity of subfragment-1 prepared with chymotrypsin but did not affect its ability to polymerize actin. Trypsin attacked the subfragment-1 heavy chain at two sites and produced 26 K, 50 K, and 21 K fragments. From the comparison of the time course of tryptic digestion with that of the decrease in actin activation, it was deduced that cleavage of the 50 K-21 K junction was mainly responsible for the decrease in actin activation. We also measured the length and the amount of F-actin polymerized by the addition of different amounts of subfragment-1. It was found that the amount of F-actin increased with the increase in the amount of subfragment-1 added and that the length of F-actin also increased though slightly. We concluded from the results that subfragment-1 enhanced the polymerization not only by facilitating the nucleus formation but also by strengthening the bond between actin monomers in forming F-actin.  相似文献   

8.
When myosin chymotryptic subfragment-1 was treated with dimethyl-suberimidate or dithiobis (succinimidylpropionate) under nearly physiological ionic conditions, the alkali light chains A1 and A2 were selectively and intramolecularly cross-linked to the 95K heavy chain. Experimental conditions were developed with both reagents for optimal production of A1 and A2-containing dimers. After conversion of reversibly cross-linked S-1 (A1+A2) into (27K-50K-20K)-S-1 derivative by restricted tryptic proteolysis, the light chains were found to be attached to the NH2-terminal 27K segment of the heavy chain.  相似文献   

9.
Recently, by treating the head portion of skeletal myosin subfragment-1 (S1) with the bifunctional agent dibromobimane, we introduced an intramolecular covalent cross-link which resulted in the stabilisation of an internal loop in the heavy chain structure of the head [Mornet et al. (1984) Proc. Natl Acad. Sci. USA 82, 1658-1662]. In order to define the functional properties of this new S1 conformational state, we have first determined the experimental conditions for the optimum modification of S1 by dibromobimane. We finally settled on a 60% yield of cross-linked S1. Because the modification occurs between the 50-kDa and the 20-kDa tryptic heavy chain fragments which have been postulated to be involved in the interaction of native S1 with actin, we have investigated the association of dibromobimane-treated S1 with actin, using chemical cross-linking of their rigor complex with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linked species obtained were analyzed by polyacrylamide gel electrophoresis and compared with those known for unmodified S1. The carbodiimide-catalyzed linkage between actin and dibromobimane-modified S1 led to a singlet protein band migrating with an apparent molecular mass of 155 kDa, in contrast to the usual doublet bands of 175 kDa and 185 kDa produced with native S1. This result suggests that a change has occurred at the actin interface on the dibromobimane-treated S1 heavy chain. The covalent complex generated by carbodiimide cross-linking between actin and dibromobimane-modified S1 (27-kDa + 50-kDa + 20-kDa fragments) was submitted to chemical hydrolysis with hydroxylamine. The nature of the products identified is consistent with the conclusion that the internal freezing of the heavy chain structure by dibromobimane induces the loss of the ability to cross-linkage of the actin site on the 20-kDa domain but does not affect the conformation of the second site on the 50-kDa segment, which becomes the unique actin region cross-linkable by actin.  相似文献   

10.
Differential binding of contractile proteins from skeletal muscle to Cibacron Blue F3GA-Sepharose affinity columns provides the basis for a new purification technique. Myosin subfragments bind at low ionic strength and are eluted by high salt (e.g., 1.5 m NaCl). Myosin light chain 2 also binds at low ionic strength, whereas light chain 1 is only partially retarded and light chain 3 does not bind. Myosin's marginal solubility in the low-salt buffers required for binding renders it unsuitable for Blue Sepharose chromatography. Neither G-actin nor F-actin bind. Crude preparations of myosin subfragment-1 or light chains undergo significant purification upon Blue Sepharose chromatography. Nee free chromophore inhibits the ATPase activities of myosin and actomyosin at micromolar dye concentrations, whereas the binding of subfragment-1 to actin (in myofibrils) and the tension of glycerinated fibers are inhibited at millimolar dye concentrations. The dye binds at multiple sites on myosin, and inhibits its actomyosin ATPase both competitively and uncompetitively.  相似文献   

11.
Skeletal myosin has two isoforms of the essential light chain (ELC), called LC1 and LC3, which differ only in their N-terminal amino acid sequence. The LC1 has 41 additional residues containing seven pairs of Ala-Pro, which form an elongated structure, and two pairs of lysines located near the N-terminus. When myosin subfragment-1 (S1) binds to actin, these lysines may interact with the C-terminus of actin and be responsible for the isoform specific properties of myosin. Here we employ cross-linking to identify the LC1 residues that are in contact with actin. S1 was reconstituted with various LC1 mutants and reacted with the zero-length cross-linker 1-ethyl-3-[3-dimethyl-aminopropyl]-carbodiimide (EDC). Cross-linking occurred only when actin was in molar excess over S1. Wild-type LC1 could be cross-linked through the terminal alpha-NH2 group, as well as via the two pairs of lysines. In a mutant ELC, where the lysines were deleted but two arginines were introduced near the N-terminus, the light chain could still be cross-linked via the terminal alpha-NH2 group. When the charge was reduced in the N-terminal region while retaining the Ala-Pro rich region, the mutant could not be cross-linked. These results suggest that as long as the N-terminus contains charged residues and an Ala-Pro rich extension, the binding between LC1 and actin can occur.  相似文献   

12.
Smooth muscle contraction is controlled in part by the state of phosphorylation of myosin. A recently discovered actin and calmodulin-binding protein, named caldesmon, may also be involved in regulation of smooth muscle contraction. Caldesmon cross-links actin filaments and also inhibits actin-activated ATP hydrolysis by myosin, particularly in the presence of tropomyosin. We have studied the effect of caldesmon on the rate of hydrolysis of ATP by skeletal muscle myosin subfragment-1, a system in which phosphorylation of the myosin is not important in regulation. Caldesmon is a very effective inhibitor of ATP hydrolysis giving up to 95% inhibition. At low ionic strength (approximately 20 mM) this effect does not require smooth muscle tropomyosin, whereas at high ionic strength (approximately 120 mM) tropomyosin enhances the inhibitory activity of caldesmon at low caldesmon concentrations. Cross-linking of actin is not essential for inhibition of ATP hydrolysis to occur since at high ionic strength there is very little cross-linking as determined by a low speed sedimentation assay. Under all conditions examined, the decrease in the rate of ATP hydrolysis is accompanied by a decrease in the binding of myosin subfragment-1 to actin. Furthermore, caldesmon weakens the equilibrium binding of myosin subfragment-1 to actin in the presence of pyrophosphate. We conclude that caldesmon has a general weakening effect on the binding of skeletal muscle myosin subfragment-1 to actin and that this weakening in binding may be responsible for inhibition of ATP hydrolysis.  相似文献   

13.
Studies on the actomyosin ATPase and the role of the alkali light chains   总被引:1,自引:0,他引:1  
Myosin isoenzymes, highly enriched in either alkali 1 or alkali 2 light chains have been prepared by light chain exchange in 4.7 M ammonium chloride, under conditions where there is minimal loss of ATPase activity. While the actin-activated ATPase measurements were complicated by a biphasic dependence on actin concentration, the two myosin isoenzymes behaved in a similar manner; at a variety of ionic strength conditions their maximum rates of ATP hydrolysis were nearly identical. Furthermore, under conditions where their Km values could be reliably determined, their apparent affinities for actin in the presence of ATP did not differ greatly. These results suggest that the presence of a particular alkali light chain does not influence the maximum rate of ATP turnover by actomyosin under ionic strength conditions approximating physiological.  相似文献   

14.
To probe the effect of nucleotide on the formation of ionic contacts between actin and the 567-578 residue loop of the heavy chain of rabbit skeletal muscle myosin subfragment 1 (S1), the complexes between F-actin and proteolytic derivatives of S1 were submitted to chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. We have shown that in the absence of nucleotide both 45 kDa and 5 kDa tryptic derivatives of the central 50 kDa heavy chain fragment of S1 can be cross-linked to actin, whereas in the presence of MgADP.AlF4, only the 5 kDa fragment is involved in cross-linking reaction. By the identification of the N-terminal sequence of the 5-kDa fragment, we have found that trypsin splits the 50 kDa heavy chain fragment between Lys-572 and Gly-573, the residues located within the 567-578 loop. Using S1 preparations cleaved with elastase, we could show that the residue of 567-578 loop that can be cross-linked to actin in the presence of MgADP.AlF4 is Lys-574. The observed nucleotide-dependent changes of the actin-subfragment 1 interface indicate that the 567-578 residue loop of skeletal muscle myosin participates in the communication between the nucleotide and actin binding sites.  相似文献   

15.
1. Presence of N-terminal peptide ("difference peptide") in alkali light chain 1 (A1) of fish fast skeletal myosin was examined by comparing two kinds of light chain-based myosin subfragment 1 (S1) isozymes from the yellowtail Seriola quinqueradiata. 2. On tryptic digestion, A1 was cleaved to a smaller fragment (mol. wt decrement by 2000) along with the cleavage of S1 heavy chain, while A2 was resistant to trypsin. Two-dimensional gel electrophoresis showed that A1 released a basic peptide by tryptic digestion. 3. Both S1 isozymes showed clear kinetic differences in actin-activated Mg-ATPase activity, suggesting a higher affinity of A1 for actin. Affinity of A2 for heavy chain was also estimated to be about 2-fold higher than that of A1, as judged by the model experiments in which rabbit S1 isozymes were hybridized with heterologous alkali light chains.  相似文献   

16.
The alkali light chain, A2, in subfragment-1 (S-1) was exchanged with A1 added externally in NH4 + -NH3 buffer (pH 9.9). The exchange yield was higher than 80% using only 2-fold molar excess of A1 over S-1 containing A2. The ATPase activities of the exchanged S-1 (A1) were the same as those of untreated S-1 (A1). The method was also applicable to exchanging the alkali light chains in myosin.  相似文献   

17.
Bundling of myosin subfragment-1-decorated actin filaments   总被引:1,自引:0,他引:1  
We have reported previously that rabbit skeletal myosin subfragment-1 (S-1) assembles actin filaments into bundles. The rate of this reaction can be estimated roughly from the initial rate (Vo) of the accompanying turbidity increase ("super-opalescence") of the acto-S-1 solution. Vo is a function of the molar ratio (r) of S-1 to actin, with a peak at r = 1/6 to 1/7 and minimum around r = 1. In the present paper we report a different type of opalescence (we call it "hyper-opalescence") of acto-S-1 solutions, which also resulted from bundle formation. Adjacent filaments in the bundles had a distance of approximately 180 A. Hyper-opalescence occurred at r approximately equal to 1 when KCOOCH3 was used instead of KCl. By comparing the effects of ADP, epsilon-ADP, tropomyosin or ionic strength upon the super- and hyper-opalescence, we concluded that the two types of S-1-induced actin bundling had different molecular mechanisms. The hyper-opalescence type of bundling seemed to be induced by S-1, which was not complexed with actin in the manner of conventional rigor binding. The presence of the regulatory light chain did not affect hyper-opalescence (or super-opalescence), since there were no significant differences between papain S-1 and chymotryptic S-1 with respect to these phenomena.  相似文献   

18.
The heavy chain of subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96K. The heavy chain was split into 26 K, 50 K, and 21 K fragments by trypsin. When the trypsin-treated subfragment-1 was cross-linked with dimethyl suberimidate, cross-linked products of 26 K, 50 K, and 21 K fragments and of 50 K and 21 K fragments appeared, but there was little cross-linked product of 26 K and 50 K fragments or of 26 K and 21 K fragments. When the cross-linking experiments were carried out in the presence of actin, a new band appeared and the amount of cross-linked product of 26 K, 50 K, and 21 K fragments decreased by about 50%. The molecular weight of the new band was lower than that of the cross-linked product of 26 K, 50 K, and 21 K fragments, and higher than that of the dimer of actin. Based on this and some other results, we suggest that this band represented a cross-linked product of actin and the 50 K fragment. We also suggest that the decrease in the amount of cross-linked product of 26 K, 50 K, and 21 K fragments reflected the conformational change in subfragment-1 due to the binding of actin.  相似文献   

19.
The alkali light chain of rabbit skeletal muscle myosin, A1, was cyanylated with 2-nitro-5-thiocyanobenzoic acid, and the peptide bond at Cys 177 was subsequently cleaved in the presence of 0.05 M CaCl2. Two peptide fragments, from the N-terminal to the residue 176 (CF1) and from the residue 177 to the C-terminal (CF2), were obtained. The CD spectrum and the difference UV absorption spectrum induced by CaCl2 suggested that CF1 largely retained the higher order structure of A1. The CF1 fragment, however, could neither incorporate subfragment-1 (S-1) by an exchange reaction, nor bind with the renatured 20K fragment of S-1 heavy chain. On the other hand, the C-terminal fragment of 14 residues, CF2, could bind with the 20K fragment of S-1 heavy chain. These results indicate that the binding site of the alkali light chain for the heavy chain of myosin is located within the C-terminal 14 residues.  相似文献   

20.
The direct binding of S1(A1) and S1(A2) to regulated actin has been investigated by centrifugation. Binding was measured in the presence of either Mg·AdoPP[NH]P or Mg·ADP at 24°C at various ionic strengths. At low ionic strength, in either the presence or absence of Ca2+, the binding of S1(A1) to regulated actin was always stronger than for S1(A2). As the ionic strength was increased the differential binding between S1(A1) and S1(A2) was still maintained in the presence of Ca2+ but not in its absence. These data are discussed in terms of a modifying role for the N-terminal region of the A1 light chain in regulation of the contractile process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号