共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaphase-promoting complex (APC/C) orchestrates progression through mitosis by decorating cell-cycle regulators with ubiquitin chains. To nucleate chains, the APC/C links ubiquitin to a lysine in substrates, but to elongate chains it modifies lysine residues in attached ubiquitin moieties. The mechanism enabling the APC/C, and ubiquitin ligases in general, to switch from lysine residues in substrates to specific ones in ubiquitin remains poorly understood. Here, we determine the topology and the mechanism of assembly for the ubiquitin chains mediating functions of the human APC/C. We find that the APC/C triggers substrate degradation by assembling K11-linked ubiquitin chains, the efficient formation of which depends on a surface of ubiquitin, the TEK-box. Strikingly, homologous TEK-boxes are found in APC/C substrates, where they facilitate chain nucleation. We propose that recognition of similar motifs in substrates and ubiquitin enables the APC/C to assemble ubiquitin chains with the specificity and efficiency required for tight cell-cycle control. 相似文献
2.
Huzil JT Pannu R Ptak C Garen G Ellison MJ 《The Journal of biological chemistry》2007,282(52):37454-37460
Within the ubiquitin degradation pathway, the canonical signal is a lysine 48-linked polyubiquitin chain that is assembled upon an internal lysine residue of a substrate protein. Once constructed, this ubiquitin chain becomes the principle signal for recognition and target degradation by the 26S proteasome. The mechanism by which polyubiquitin chains are assembled on a substrate protein, however, has yet to be clearly defined. In an in vitro model system, purified E2-ubiquitin thiolester was unable to catalyze the formation of polyubiquitin chains in the absence of the ubiquitin-activating enzyme E1. Mutagenesis of key residues within the E1 active site revealed that its conserved catalytic cysteine residue is essential for the formation of these chains. Moreover, inactivation of the E2 active site had no effect on the ability of E1 to catalyze ubiquitin chain formation. These findings strongly suggest E1 is responsible for not only the activation of ubiquitin but also for the direct catalytic extension of a lysine 48-linked polyubiquitin chain. 相似文献
3.
Release of ubiquitin-charged Cdc34 from the SCF ubiquitin ligase followed by diffusion-driven collision with substrate has been proposed to underlie ubiquitination of the canonical SCF substrate Sic1. Cdc34 F72V, reported to be defective in dissociation from SCF, served as key validation. Here, we test predictions of this "hit-and-run" hypothesis. We find that Cdc34 F72V is generally defective in SCF-mediated activation but, contrary to expectation, does not compete with wild-type Cdc34 in vitro or in vivo and can fulfill the physiological role of Cdc34 with only moderate delay in Sic1 turnover. Whereas a hit-and-run mechanism might explain how Cdc34 can transfer ubiquitin to the ends of growing ubiquitin chains on SCF-bound substrates, molecular modeling suggests that an E2 docked to SCF can do so without dissociating. We propose that interactions between Cdc34 approximately Ub and SCF directly activate ubiquitin transfer within a substrate-SCF-Cdc34 approximately Ub ternary complex. 相似文献
4.
Trempe JF Brown NR Lowe ED Gordon C Campbell ID Noble ME Endicott JA 《The EMBO journal》2005,24(18):3178-3189
The ubiquitin-pathway associated (UBA) domain is a 40-residue polyubiquitin-binding motif. The Schizosaccharomyces pombe protein Mud1 is an ortholog of the Saccharomyces cerevisiae DNA-damage response protein Ddi1 and binds to K48-linked polyubiquitin through its UBA domain. We have solved the crystal structure of Mud1 UBA at 1.8 angstroms resolution, revealing a canonical three-helical UBA fold. We have probed the interactions of this domain using mutagenesis, surface plasmon resonance, NMR and analytical ultracentrifugation. We show that the ubiquitin-binding surface of Mud1 UBA extends beyond previously recognized motifs and can be functionally dissected into primary and secondary ubiquitin-binding sites. Mutation of Phe330 to alanine, a residue exposed between helices 2 and 3, significantly reduces the affinity of the Mud1 UBA domain for K48-linked polyubiquitin, despite leaving the primary binding surface functionally intact. Moreover, K48-linked diubiquitin binds a single Mud1 UBA domain even in the presence of excess UBA. We therefore propose a mechanism for the recognition of K48-linked polyubiquitin chains by Mud1 in which diubiquitin units are specifically recognized by a single UBA domain. 相似文献
5.
Randy Suryadinata Jessica K. Holien George Yang Michael W. Parker Elena Papaleo Boris ?ar?evi? 《Cell cycle (Georgetown, Tex.)》2013,12(11):1732-1744
The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34. 相似文献
6.
Most substrates of the 26 S proteasome are recognized only following conjugation to a Lys48-linked polyubiquitin chain. Rad23 is one member of a family of proteins that possesses an N-terminal ubiquitin-like domain (UbL) and a C-terminal ubiquitin-associated domain(s) (UBA). Recent studies have shown that UbLs interact with 26 S proteasomes, whereas UBAs bind polyubiquitin chains. These biochemical properties suggest that UbL-UBA proteins may shuttle polyubiquitinated substrates to proteasomes. Here we show that contrary to prediction from this model, the effect of human Rad23A on the degradation of polyubiquitinated substrates catalyzed by purified proteasomes is exclusively inhibitory. Strong inhibition is dependent on the presence of both UBAs, independent of the UbL, and can be explained by competition between the UBA domains and the proteasome for binding to substrate-linked polyubiquitin chains. The UBA domains bind Lys48-linked polyubiquitin chains in strong preference to Lys63 or Lys29-linked chains, leading to selective inhibition of the assembly and disassembly of Lys48-linked chains. These results place constraints on the mechanism(s) by which UbL-UBA proteins promote proteasome-catalyzed proteolysis and reveal new properties of UBA domains. 相似文献
7.
Zhang NY Jacobson AD Macfadden A Liu CW 《The Journal of biological chemistry》2011,286(29):25540-25546
The 26 S proteasome possesses two distinct deubiquitinating activities. The ubiquitin (Ub) chain amputation activity removes the entire polyUb chain from the substrates. The Ub chain trimming activity progressively cleaves a polyUb chain from the distal end. The Ub chain amputation activity mediates degradation-coupled deubiquitination. The Ub chain trimming activity can play a supportive or an inhibitory role in degradation, likely depending on features of the substrates. How Ub chain trimming assists degradation is not clear. We find that inhibition of the chain trimming activity of the 26 S proteasome with Ub aldehyde significantly inhibits degradation of Ub4 (Lys-48)-UbcH10 and causes accumulation of free Ub4 (generated from chain amputation) that can be retained on the proteasome. Also, a non-trimmable Lys-48-mimic Ub4 efficiently targets UbcH10 to the 26 S proteasome, but it cannot support efficient degradation of UbcH10 compared with regular Lys-48 Ub4. These results indicate that polyUb chain trimming promotes proteasomal degradation of Lys-48-linked substrates. Mechanistically, we propose that Ub chain trimming cleaves the proteasome-bound Lys-48-linked polyUb chains, which vacates the Ub binding sites of the 26 S proteasome, thus allowing continuous substrate loading. 相似文献
8.
Tadashi Satoh Eri Sakata Shunsuke Yamamoto Yoshiki Yamaguchi Akira Sumiyoshi Koichi Kato 《Biochemical and biophysical research communications》2010,400(3):329-333
Lys48-linked polyubiquitin chains serve as a signal for protein degradation by 26S proteasomes through its Ile44 hydrophobic patches interactions. The individual ubiquitin units of each chain are conjugated through an isopeptide bond between Lys48 and the C-terminal Gly76 of the preceding units. The conformation of Lys48-linked tetraubiquitin has been shown to change dynamically depending on solution pH. Here we enzymatically synthesized a wild-type Lys48-linked tetraubiquitin for structural study. In the synthesis, cyclic and non-cyclic species were obtained as major and minor fractions, respectively. This enabled us to solve the crystal structure of tetraubiquitin exclusively with native Lys48-linkages at 1.85 Å resolution in low pH 4.6. The crystallographic data clearly showed that the C-terminus of the first ubiquitin is conjugated to the Lys48 residue of the fourth ubiquitin. The overall structure is quite similar to the closed form of engineered tetraubiquitin at near-neutral pH 6.7, previously reported, in which the Ile44 hydrophobic patches face each other. The structure of the second and the third ubiquitin units [Ub(2)-Ub(3)] connected through a native isopeptide bond is significantly different from the conformations of the corresponding linkage of the engineered tetraubiquitins, whereas the structures of Ub(1)-Ub(2) and Ub(3)-Ub(4) isopeptide bonds are almost identical to those of the previously reported structures. From these observations, we suggest that the flexible nature of the isopeptide linkage thus observed contributes to the structural arrangements of ubiquitin chains exemplified by the pH-dependent closed-to-open conformational transition of tetraubiquitin. 相似文献
9.
S5a is a critical component of proteasome and carries ubiquitin recognition function. Previous nuclear magnetic resonance (NMR) experiments have shown that K48-linked diubiquitin binds to S5a through a major and a minor conformational species. Molecular dynamics simulations have been performed on S5a and S5a:K48-linked diubiquitin complex extracted from both species to investigate the essential dynamic behaviour of the receptor S5a in free and complex with the diubiquitin. It shows that structures of S5a as well as S5a:diubiquitin complex are very mobile during the simulations, which enables the receptor to undergo a conformational interconversion from the minor to major species or vice versa, though finally the receptor alone tends to adopt a tight packed structure. The binding of diubiquitin to S5a reduces the structural mobility of the receptor, however, it is still able to cover the different conformations within each species of the complex. Despite the high mobility of the structures, the binding of ubiquitin interacting with motif 2 (UIM2) is always stronger than the UIM1 to the ubiquitin subunit. Accordingly, the current dynamic study provides a vivid view how the receptor in free and complex with diubiquitin sampled the multiple conformations as well as their exchanges revealed in two NMR structures. 相似文献
10.
Liu C Fei E Jia N Wang H Tao R Iwata A Nukina N Zhou J Wang G 《The Journal of biological chemistry》2007,282(19):14558-14566
alpha-Synuclein (alpha-syn) and ubiquitin (Ub) are major protein components deposited in Lewy bodies (LBs) and Lewy neurites, which are pathologic hallmarks of idiopathic Parkinson disease (PD). Almost 90% of alpha-syn in LBs is phosphorylated at serine 129 (Ser(129)). However, the role of Ser(129)-phosphorylated alpha-syn in the biogenesis of LBs remains unclear. Here, we show that compared with coexpression of wild type (WT)alpha-syn and Ub, coexpression of phospho-mimic mutant alpha-syn (S129D) and Ub in neuro2a cells results in an increase of Ub-conjugates and the formation of ubiquitinated inclusions. Furthermore, S129D alpha-syn fails to increase the Ub-conjugates and form ubiquitinated inclusions in the presence of a K63R mutant Ub. In addition, as compared with WT alpha-syn, S129D alpha-syn increased cytoplasmic and neuritic aggregates of itself in neuro2a cells treated with H(2)O(2) and serum deprivation. These results suggest that the contribution of Ser(129)-phosphorylated alpha-syn to the Lys(63)-linked Ub-conjugates and aggregation of itself may be involved in the biogenesis of LBs in Parkinson disease and other related synucleinopathies. 相似文献
11.
Hirano T Serve O Yagi-Utsumi M Takemoto E Hiromoto T Satoh T Mizushima T Kato K 《The Journal of biological chemistry》2011,286(43):37496-37502
Proteasomal degradation is mediated through modification of target proteins by Lys-48-linked polyubiquitin (polyUb) chain, which interacts with several binding partners in this pathway through hydrophobic surfaces on individual Ub units. However, the previously reported crystal structures of Lys-48-linked diUb exhibit a closed conformation with sequestered hydrophobic surfaces. NMR studies on mutated Lys-48-linked diUb indicated a pH-dependent conformational equilibrium between closed and open states with the predominance of the former under neutral conditions (90% at pH 6.8). To address the question of how Ub-binding proteins can efficiently access the sequestered hydrophobic surfaces of Ub chains, we revisited the conformational dynamics of Lys-48-linked diUb in solution using wild-type diUb and cyclic forms of diUb in which the Ub units are connected through two Lys-48-mediated isopeptide bonds. Our newly determined crystal structure of wild-type diUb showed an open conformation, whereas NMR analyses of cyclic Lys-48-linked diUb in solution revealed that its structure resembled the closed conformation observed in previous crystal structures. Comparison of a chemical shift of wild-type diUb with that of monomeric Ub and cyclic diUb, which mimic the open and closed states, respectively, with regard to the exposure of hydrophobic surfaces to the solvent indicates that wild-type Lys-48-linked diUb in solution predominantly exhibits the open conformation (75% at pH 7.0), which becomes more populated upon lowering pH. The intrinsic properties of Lys-48-linked Ub chains to adopt the open conformation may be advantageous for interacting with Ub-binding proteins. 相似文献
12.
13.
Sliter DA Aguiar M Gygi SP Wojcikiewicz RJ 《The Journal of biological chemistry》2011,286(2):1074-1082
Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are large, ubiquitously expressed, endoplasmic reticulum membrane proteins that form tetrameric IP(3) and Ca(2+)-gated Ca(2+) channels. Endogenous IP(3)Rs provide very appealing tools for studying the ubiquitin-proteasome pathway in intact mammalian cells because, upon activation, they are rapidly ubiquitinated and degraded. Using mass spectrometry, we previously examined the ubiquitination of IP(3)R1 in αT3-1 pituitary gonadotrophs and found that IP(3)R1 ubiquitination is highly complex, with receptors being modified at multiple sites by monoubiquitin and polyubiquitin chains formed through both Lys-48 and Lys-63 linkages (Sliter, D. A., Kubota, K., Kirkpatrick, D. S., Alzayady, K. J., Gygi, S. P., and Wojcikiewicz, R. J. H. (2008) J. Biol. Chem. 283, 35319-35328). Here, we have extended these studies to determine whether IP(3)R2 and IP(3)R3 are similarly modified and if ubiquitination is cell type-dependent. Using mass spectrometry and linkage-specific ubiquitin antibodies, we found that all IP(3)R types are subject to ubiquitination at approximately the same locations and that, independent of cell type, IP(3)Rs are modified by monoubiquitin and Lys-48- and Lys-63-linked ubiquitin chains, although in differing proportions. Remarkably, the attached Lys-48- and Lys-63-linked ubiquitin chains are homogeneous and are segregated to separate IP(3)R subunits, and Lys-48-linked ubiquitin chains, but not Lys-63-linked chains, are required for IP(3)R degradation. Together, these data provide unique insight into the complexities of ubiquitination of an endogenous ubiquitin-proteasome pathway substrate in unperturbed mammalian cells. Importantly, although Lys-48-linked ubiquitin chains appear to trigger proteasomal degradation, the presence of Lys-63-linked ubiquitin chains suggests that ubiquitination of IP(3)Rs may have physiological consequences beyond signaling for degradation. 相似文献
14.
Ubiquitin (Ub) is a small protein highly conserved among eukaryotes and involved in practically all aspects of eukaryotic cell biology. Polymeric chains assembled from covalently-linked Ub monomers function as molecular signals in the regulation of a host of cellular processes. Our previous studies have shown that the predominant state of Lys48-linked di- and tetra-Ub chains at near-physiological conditions is a closed conformation, in which the Ub-Ub interface is formed by the hydrophobic surface residues of the adjacent Ub units. Because these very residues are involved in (poly)Ub interactions with the majority of Ub-binding proteins, their sequestration at the Ub-Ub interface renders the closed conformation of polyUb binding incompetent. Thus the existence of open conformation(s) and the interdomain motions opening and closing the Ub-Ub interface is critical for the recognition of Lys48-linked polyUb by its receptors. Knowledge of the conformational properties of a polyUb signal is essential for our understanding of its specific recognition by various Ub-receptors. Despite their functional importance, open states of Lys48-linked chains are poorly characterized. Here we report a crystal structure of the open state of Lys48-linked di-Ub. Moreover, using NMR, we examined interactions of the open state of this chain (at pH4.5) with a Lys48-linkage-selective receptor, the UBA2 domain of a shuttle protein hHR23a. Our results show that di-Ub binds UBA2 in the same mode and with comparable affinity as the closed state. Our data suggest a mechanism for polyUb signal recognition, whereby Ub-binding proteins select specific conformations out of the available ensemble of polyUb chain conformations. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics. 相似文献
15.
Mutations in alpha-synuclein, Parkin, and UCH-L1 cause heritable forms of Parkinson disease. Unlike alpha-synuclein, for which no precise biochemical function has been elucidated, Parkin functions as a ubiquitin E3 ligase, and UCH-L1 is a deubiquitinating enzyme. The E3 ligase activity of Parkin in Parkinson disease is poorly understood and is further obscured by the fact that multiubiquitin chains can be formed through distinct types of linkages that regulate diverse cellular processes. For instance, ubiquitin lysine 48-linked multiubiquitin chains target substrates to the proteasome, whereas ubiquitin lysine 63-linked chains control ribosome function, protein sorting and trafficking, and endocytosis of membrane proteins. It is notable in this regard that ubiquitin lysine 63-linked chains promote the degradation of membrane proteins by the lysosome. Because both Parkin and alpha-synuclein can regulate the activity of the dopamine transporter, we investigated whether they influenced ubiquitin lysine 63-linked chain assembly. These studies revealed novel biochemical activities for both Parkin and alpha-synuclein. We determined that Parkin functions with UbcH13/Uev1a, a dimeric ubiquitin-conjugating enzyme, to assemble ubiquitin lysine 63-linked chains. Our results and the results of others indicate that Parkin can promote both lysine 48- and lysine 63-linked ubiquitin chains. alpha-Synuclein also stimulated the assembly of lysine 63-linked ubiquitin chains. Because UCH-L1, a ubiquitin hydrolase, was recently reported to form lysine 63-linked conjugates, it is evident that three proteins that are genetically linked to Parkinson disease can contribute to lysine 63 multiubiquitin chain formation. 相似文献
16.
17.
Neddylation, a process that conjugates the ubiquitin-like polypeptide NEDD8 to cullin proteins, activates cullin-RING ubiquitin ligases (CRLs). Deneddylation, in which the COP9 signalosome (CSN) removes NEDD8 from cullins, inactivates CRLs. However, genetic studies of CSN function conclude that deneddylation also promotes CRL activity. It has been proposed that a cyclic transition through neddylation and deneddylation is required for the regulation of CRL activity in vivo. Recent discoveries suggest that an additional level of complexity exists, whereby CRL components are targets for degradation, mediated either by autocatalytic ubiquitination or by unknown mechanisms. Deneddylation by CSN and deubiquitylation by CSN-associated ubiquitin-specific protease 12 protect CRL components from cellular depletion, thus maintaining the physiological CRL activities. 相似文献
18.
Eukaryotic cells repair ultraviolet light (UV)- and chemical carcinogen-induced DNA strand-distorting damage through the nucleotide excision repair (NER) pathway. Concurrent activation of the DNA damage checkpoints is also required to arrest the cell cycle and allow time for NER action. Recent studies uncovered critical roles for ubiquitin-mediated post-translational modifications in controlling both NER and checkpoint functions. In this review, we will discuss recent progress in delineating the roles of cullin-RING E3 ubiquitin ligases in orchestrating the cellular DNA damage response through ubiquitination of NER factors, histones, and checkpoint effectors. 相似文献
19.
Although functional diversity in polyubiquitin chain signaling has been ascribed to the ability of differently linked chains to bind in a distinctive manner to effector proteins, structural models of such interactions have been lacking. Here, we use NMR to unveil the structural basis of selective recognition of Lys48-linked di- and tetraubiquitin chains by the UBA2 domain of hHR23A. Although the interaction of UBA2 with Lys48-linked diubiquitin involves the same hydrophobic surface on each ubiquitin unit as that utilized in monoubiquitin:UBA complexes, our results show how the "closed" conformation of Lys48-linked diubiquitin is crucial for high-affinity binding. Moreover, recognition of Lys48-linked diubiquitin involves a unique epitope on UBA, which allows the formation of a sandwich-like diubiqutin:UBA complex. Studies of the UBA-tetraubiquitin interaction suggest that this mode of UBA binding to diubiquitin is relevant for longer chains. 相似文献
20.
SET domain protein methyltransferases catalyze the transfer of methyl groups from the cofactor S-adenosylmethionine (AdoMet) to specific lysine residues of protein substrates, such as the N-terminal tails of histones H3 and H4 and the large subunit of the Rubisco holoenzyme complex. The crystal structures of pea Rubisco large subunit methyltransferase (LSMT) in ternary complexes with either lysine or epsilon-N-methyllysine (MeLys) and the product S-adenosylhomocysteine (AdoHcy) were determined to resolutions of 2.65 and 2.55 A, respectively. The zeta-methyl group of MeLys is bound to the enzyme via carbon-oxygen hydrogen bonds that play a key role in catalysis. The methyl donor and acceptor are aligned in a linear geometry for S(N)2 nucleophilic transfer of the methyl group during catalysis. Differences in hydrogen bonding between the MeLys epsilon-amino group and Rubisco LSMT and SET7/9 explain why Rubisco LSMT generates multiply methylated Lys, wheras SET7/9 generates only MeLys. 相似文献