首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
针对红球菌低分子量腈水合酶(L—NHase)在重组茵中难以表达这一问题,通过对其d亚基及调控蛋白NhlE基因的核糖体结合位点和0c,口亚基间隔序列的长度进行改造,构建了重组表达载体,实现了L.NHase及其调控蛋白NhlE在E.coliB121(DE3)中过量表达。通过培养条件优化,得到最佳表达条件为:37℃培养茵体浓度(DD600)到1.0时,加入终浓度为0.1g/L的CoCl2·6H,0,0.6mmol/L的IPTG,然后在24℃下诱导表达24h。最终得到的重组蛋白粗酶液的活性为(109.9-I-5.5)U/rag。采用Strep.tag/Strep—Tactin亲和层析简化了L-NHase的纯化方法,本研究结果为一些难于异源重组表达的多亚基蛋白质的表达具有一定的借鉴意义。  相似文献   

2.
腈水合酶由α亚基和β亚基组成,活化元件对其功能表达至关重要,研究腈水合酶基因簇中各元件的表达比例对酶重组表达的影响具有重要意义。以来源于Klebsiella oxytoca KCTC 1686的腈水合酶(NHaseK)为研究对象,构建了多种表达策略,以期实现α亚基、β亚基和活化元件17k差异表达。利用pETDuet-1质粒具有双T7启动子的特点,将上述基因以八种不同的组合方式分别插入于两个启动子之后。当将三段基因同时插入于第一个启动子之后时,亚基表达量均衡,比活力为0.78 U/mg蛋白,是亚基表达量比例为5:3时的124%。在此基础上,在第二个启动子之后插入活化元件基因,活化元件表达水平提升2倍,比活提升5%,为0.82 U/mg蛋白。当将α亚基和β亚基插入于不同启动子之后时,酶活仅为对照组的10%,说明NHaseK的亚基必须同时转录才可形成成熟蛋白。进一步考察质粒拷贝数对大肠杆菌表达NHaseK的影响,确定15~20的质粒拷贝数足够实现NHaseK的功能表达。结果表明,亚基的均衡表达以及活化元件的充分表达对NHaseK的重组表达具有积极作用。  相似文献   

3.
为从基因水平上改造腈水合酶,进行了诺卡氏菌腈水合酶基因的外源表达研究。在重组大肠杆菌表达系统内,腈水合酶的α亚基几乎不能正常表达,在重组E. coli BL21(DE3) (pET32aNHBAX)中,腈水合酶活性仅为0.04U/mg。构建重组毕赤酵母表达质粒pPIC3.5kNHBAX,采用电穿孔转化法将其转入宿主菌P. pastoris GS115中,经过菌株培养和腈水合酶的诱导表达,筛选获得了优选菌株P. pastoris NH4。对P. pastoris NH4的细胞培养和腈水合酶的诱导表达条件进行优化,结果表明,重组腈水合酶在毕赤酵母中的表达水平可以达到0.52U/mg,但不能稳定积累。  相似文献   

4.
产腈水合酶重组大肠杆菌的质粒稳定性研究   总被引:7,自引:0,他引:7  
成功构建了腈水合酶(nitrile hydratase,NHase)高表达的重组大肠杆菌E.coliBL21(DE3)/pETNHM(Kanr),研究了重组质粒pETNHM在重组菌株中的质粒稳定性。结果表明,pETNHM具有较好的结构稳定性,连续传代60代后质粒的基因序列没有明显缺失,且能够正常表达腈水合酶。pETNHM具有分离不稳定性,在无抗生素选择压力下,连续传代48代后质粒丢失的无质粒细胞开始出现。琼脂糖凝胶电泳定量分析表明,2/3的质粒pETNHM以二聚体形式存在,导致质粒拷贝数的下降。进一步研究表明,重组细胞的连续高速分裂及腈水合酶的高表达也会造成质粒拷贝数的下降,从而降低其分离稳定性。反之,重组菌株相对于宿主菌株的较高比生长速率有利于保持含质粒细胞的生长优势,卡那霉素的选择压力则能够保证质粒的稳定遗传。  相似文献   

5.
腈水合酶基因克隆与调控表达的研究进展   总被引:2,自引:1,他引:2  
微生物腈水合酶作为新型生物催化剂得到日益广泛的应用 ,但野生菌株本身存在的酶稳定性差等问题制约了这一绿色工艺的发展 ,基因工程菌为解决这个难题开辟了新的思路。总结了各种菌株中腈水合酶的序列研究进展 ,虽然基因序列和蛋白序列同源性不高 ,但它们都以基因簇的形式存在 ,并具有相同的活性中心序列。归纳了克隆并表达腈水合酶基因的基本步骤和方式 ,并提出几种有效增强重组腈水合酶活性表达的方法。  相似文献   

6.
研究了丙烯酰胺生产菌株的培养条件。通过对培养过程pH值调控、培养基补料以及诱导剂加入量的研究,使发酵液的腈水合酶的活力达到了6567u/mL菌液。这一酶活是国内外所见报道中最高的。进一步进行了丙烯腈的酶催化水合实验,产物中并没有发现副产物丙烯酸,说明在提高腈水合酶的同时,酰胺酶的活力并没有明显体现这一试验结果为工厂化生产改造以及新工艺的研究打下了基础。  相似文献   

7.
摘要:【目的】构建琼胶酶AgaD的高效表达体系,优化发酵条件提高重组酶的表达量。【方法】首先根据大肠杆菌(E.coli)密码子偏好性,优化并合成AgaD的基因,使其适合E.coli表达系统;考察了不同的E.coli表达宿主;根据N端法则构建了突变体;评价了培养基中添加CaCl2和甘氨酸(Gly)对重组酶表达的影响。【结果】成功构建了琼胶酶AgaD 的高效表达体系,确定了E.coli AD494(DE3)为最适表达宿主;利用N端法则提高了重组酶的稳定性,缩短了发酵时间;通过在培养基中添加CaCl2和甘氨酸(Gly)进一步提高了胞外酶产量。最终,发酵上清中重组酶的活力由20 U/L提高至11300 U/L,比优化前提高了500余倍。【结论】构建了琼胶酶AgaD的高效表达体系,为GH96家族琼胶酶的深入研究奠定了基础。  相似文献   

8.
腈水合酶激活子具有亚基自身交换伴随子或者金属离子伴随子的功能,能够辅助腈水合酶摄取金属离子,对于腈水合酶的活性表达必不可少。与腈水合酶自身相比,激活子的序列保守性低,研究其激活作用的特点,探索其结构与功能之间的关系,对于理解腈水合酶的成熟机制具有重要意义。将红球菌Rhodococcus rhodochrous J1低分子量型腈水合酶L-NHase分别与4种异源激活子组合共表达,测定异源激活子对L-NHase的激活作用,进一步对激活子进行序列分析和结构模拟,并研究关键结构域的功能。结果表明,4种异源激活子均能激活L-NHase,但激活后L-NHase的比酶活存在差异,激活子A对L-NHase的激活程度最高,激活后的L-NHase比酶活为出发酶的97.79%;激活子G对L-NHase的激活程度最低,激活后的L-NHase比酶活为出发酶的23.94%。激活子E和激活子G具有保守结构域TIGR03889,缺失其中部分序列会使两者的激活作用基本丧失。将激活子G的N端序列替换为激活子E的N端序列,并将激活子E的C端序列添加至激活子G的C端,能够使L-NHase的比酶活提高178.40%。激活子的激...  相似文献   

9.
通过基因数据挖掘方法(genome mining)获得了来源于固氮菌Herbaspirillum seropedicae SmR1中的腈水合酶基因hsn1。构建了hsn1/pETDuet-1/BL21的大肠杆菌共表达重组菌,经IPTG诱导获得了具有良好催化能力的Co^2+依赖型腈水合酶HSN1。利用全细胞反应研究了HSN1的底物谱,发现HSN1对底物3-(4-氯苯基)戊二腈有良好的区域选择性及一定的对映选择性,它可以选择性地水解1个腈基得到3-(4-氯苯基)-4-氰基丁酰胺,该化合物可通过一步化学反应合成巴氯芬。  相似文献   

10.
研究了丙烯酰胺生产菌株的培养条件。通过对培养过程pH值调控、培养基补料以及诱导剂加入量的研究 ,使发酵液的腈水合酶的活力达到了 6567u mL菌液。这一酶活是国内外所见报道中最高的。进一步进行了丙烯腈的酶催化水合实验 ,产物中并没有发现副产物丙烯酸 ,说明在提高腈水合酶的同时 ,酰胺酶的活力并没有明显体现这一试验结果为工厂化生产改造以及新工艺的研究打下了基础.  相似文献   

11.
A nitrile hydratase (NHase) gene from Aurantimonas manganoxydans was cloned and expressed in Escherichia coli BL21 (DE3). A downstream gene adjacent to the β-subunit was necessary for the functional expression of the recombinant NHase. The structural gene order of the Co-type NHase was α-subunit beyond β-subunit, different from the order typically reported for Co-type NHase genes. The NHase exhibited adequate thermal stability, with a half-life of 1.5 h at 50 °C. The NHase efficiently hydrated 3-cyanopyridine to produce nicotinamide. In a 1-L reaction mixture, 3.6 mol of 3-cyanopyridine was completely converted to nicotinamide in four feedings, exhibiting a productivity of 187 g nicotinamide/g dry cell weight/h. An industrial auto-induction medium was applied to produce the recombinant NHase in 10-L fermenter. A glycerol-limited feeding method was performed, and a final activity of 2170 U/mL culture was achieved. These results suggested that the recombinant NHase was efficiently cloned and produced in E. coli.  相似文献   

12.
Nitrile hydratase (NHase) has attracted substantial attention for industrial applications to produce large-scale amides. Several NHases have been investigated for functional expression in Escherichia coli (E. coli). A Fe-type NHase was obtained from an acetamiprid-degrading bacterium, Pseudoxanthomonas sp. AAP-7 and functionally expressed in E. coli BL21 (DE3). No significant NHase activity was detected from the E. coli expressing either the NHase gene alone or NHase and P46K genes transcribed as one unit. Purified recombinant NHase, co-expressed with P46K on two separate plasmids, exhibited the maximal enzyme activity. Furthermore, a GST tag attached to the N-terminus of α subunit resulted in a slight increase in the solubility and stability of NHase compared with a His tag at the C-terminus of β subunit. When co-expressed with the chaperones GroEL-GroES, the yield of the soluble recombinant NHase was improved substantially, while a small decrease in NHase activity was observed. The putative activator P46K was strictly required for production of the recombinant NHase for full enzyme activity, although the chaperones GroEL-GroES appeared to assist NHase to fold properly. This study of the expression of a fully active Fe-type NHase would provide another example to enhance our understanding of NHase biosynthesis.  相似文献   

13.
Halohydrin dehalogenases are attractive biocatalysts in producing a series of important chiral building blocks. Recombinant expression of halohydrin dehalogenase from Arthrobacter sp. AD2 (HheA) in Escherichia coli using T7 promoter-based pGEF(+) system revealed much lower expression level than that of the well-studied halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC). In this study, we changed the codon usage in the 5′-end of hheA gene to improve the expression yield of HheA. Our results showed that the expression of HheA could be largely improved by the replacement of G-rich +2 codon (adjacent to the start codon) with less G-containing codons. The expression of one of the resulting mutants HheA-D1 (replaced +2 codon GTG with CCA) was about 4-fold higher and purified yields about 8-fold greater than that of the wild-type HheA. Moreover, the expression level of the resulting HheA variants correlated well with the minimal folding free energy (ΔG) of the mRNA secondary structure surrounding the 5′-end region of the genes. These findings suggested that the G-rich +2 codon of hheA gene might be the main suppressive factor for limiting the recombinant expression of HheA and that +2 codon optimization strategy could be used as a general tool in modulating recombinant protein production in E. coli.  相似文献   

14.
《Process Biochemistry》2014,49(4):599-603
The secretory expression of recombinant enzymes in Escherichia coli has generally been a challenging task. In the present study, we investigated the expression of the extracellular enzyme cyclodextrin glycosyltransferase in E. coli. Our results indicated that when the overexpressed pre-proteins were not translocated across the inner membrane in a timely manner, they aggregated near the inner side of the E. coli inner membrane, resulting in the formation of insoluble inclusion bodies, which eventually blocked the pre-protein translocation channels and subsequently impeded further protein secretion. This mechanism suggests that for the efficient production of extracellular enzymes in E. coli, it is very important to maintain a balance between the rate of pre-protein synthesis and translocation, which can be achieved by altering the cultivation process. Our findings provide novel insight into the secretory expression of extracellular enzymes and may shed light on the further development of new strategies for extracellular protein production in E. coli.  相似文献   

15.
Aims: To evaluate the effect of different physicochemical parameters such as agitation, aeration and pH on the growth and nitrile hydratase production by Rhodococcus erythropolis MTCC 1526 in a stirred tank reactor. Methods and Results: Rhodococcus erythropolis MTCC 1526 was grown in 7‐l reactor at different agitation, aeration and controlled pH. The optimum conditions for batch cultivation in the reactor were an agitation rate of 200 rev min?1, aeration 0·5 v/v/m at controlled pH 8. In this condition, the increase in nitrile hydratase activity was almost threefold compared to that in the shake flask. Conclusion: Agitation and aeration rate affected the dissolved‐oxygen concentration in the reactor which in turn affected the growth and enzyme production. Significance and Impact of the Study: Cultivation of R. erythropolis MTCC 1526 in the reactor was found to have significant effect on the growth and nitrile hydratase production when compared to the shake flask.  相似文献   

16.
Overexpression of rhIFN-alpha2b was obtained by synthesizing a codon optimized gene for IFN-alpha2b and expressing it in the form of inclusion bodies (IBs) in Escherichia coli. The recombinant plasmid pRSET-IFNalpha, which had the IFN-alpha2b gene under the T7 promoter, was coexpressed with plasmid pGP1-2, which carried the gene for T7 RNA polymerase under the heat inducible lambdaP(L) promoter. This two plasmid expression system was optimized with respect to heat shock time, media, and time of induction in shake flask cultures. This was then scaled up into a bioreactor to get a maximum volumetric product yield of 5.2g/L at a final OD(600) of 67. At this point, the IBs represented approximately 40% of the total cellular protein. This high specific product yields eased the further downstream processing steps and improved product recoveries. The IBs were isolated and purified through ion exchange followed by step refolding to give a final product yield of approximately 3g/L, which is maximum reported in the literature. The bioassay of the refolded protein gave a specific activity of approximately 3 x 10(9)IU/mg protein.  相似文献   

17.
Escherichia coli is the most frequently used host for heterologous gene expression. This study focuses on the effect of AT-rich codons immediately downstream of the initiation codon of the target gene. The third to sixth codons of ndx3, a Nudix hydrolase gene from Thermus thermophilus HB8, were engineered by introducing several silent mutations. As a result, the expression level of ndx3 increased in proportion to the AT-content in the third to sixth codons. This result suggests that incorporation of AT-rich codons can be utilized as a general strategy for improving the expression efficiency of a recombinant protein.  相似文献   

18.
To obtain a recombinant Rhodococcus or Nocardia with not only higher enzymatic activity but also better operational stability and product-tolerance ability for bioconversion of acrylamide from acrylonitrile, an active and stable expression system of nitrile hydratase (NHase) was tried to construct as the technical platform of genetic manipulations. Two NHase genes, NHBA and NHBAX, from Nocardia YS-2002 were successfully cloned, based on bioinformatics design of PCR primers, and inserted into plasmid pUC18 and pET32a, respectively. Then, two recombinant Escherichia coli strains, JM105 (pUC18-NHBA) and BL21 (DE3) (pET32a-NHBAX) were constructed and their expressions of NHase were focused. The induction results showed that there was either no NHase activity in JM105 (pUC18-NHBA), or as low as 0.04 U (1 U=1 μmol acrylamide min−1 mg−1 dry cell) in BL21 (DE3) (pET32a-NHBAX). SDS-PAGE results showed that the -subunit of NHBA and NHBAX could not be efficiently expressed in both recombinant E. coli strains. The novel Pichia pastoris system was also applied to express NHase, but the expression level remained quite low (0.5–0.6 U) and the protein was unstable. For solving this problem, a possible genetic strategy, site-directed mutagenesis of the -subunit of the NHase was carried out. After the successful mutagenesis of the original rare start codon gtg into atg, a new recombinant strain, E. coli XL1-Blue (pUC18-NHBAM), was screened and the NHase activity stably reached as high as 51 U under the same induction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号