首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
The protozoan parasite Toxoplasma gondii elicits strong cell-mediated immunity against itself as well as nonspecific resistance against other pathogens and tumors. For this reason, we asked whether recombinant Toxoplasma could be utilized as an effective vaccine vehicle for inducing immunity against heterologous microbial infections. The circumsporozoite protein (PyCSP) of Plasmodium yoelii was engineered into a T. gondii temperature-sensitive strain (ts-4), a mutant that induces complete protection against virulent Toxoplasma challenge. When administered to mice in a single dose, a recombinant ts-4 (CSC3) that both secretes and expresses surface PyCSP induced strong anti-CSP Ab responses, with an isotype distribution pattern similar to that stimulated by the T. gondii carrier. When challenged with P. yoelii sporozoites during the first month after CSC3 vaccination, these animals displayed substantial levels of nonspecific resistance attributable entirely to the T. gondii carrier. Nevertheless, after the nonspecific protection had waned, high levels (up to 79%) of specific immunity against sporozoite challenge were achieved by boosting the animals with recombinant vaccinia virus expressing PyCSP. These CSC3-primed PyCSP-vaccinia-boosted mice displayed high frequencies of splenic PyCSP-specific IFN-gamma-producing cells, as well as CD8+ T cell-dependent cytolytic activity. In vivo depletion of CD8+ lymphocytes at the time of challenge completely ablated protective immunity in the T. gondii-primed/vaccinia-boosted animals, while neutralization of IFN-gamma or IL-12 caused a partial but significant reduction in resistance. Together these findings establish the efficacy of recombinant attenuated Toxoplasma as a vaccine vehicle for priming CD8+-dependent cell-mediated immunity.  相似文献   

2.
Live attenuated influenza vaccines (LAIVs) are effective in providing protection against influenza challenge in animal models and in preventing disease in humans. We previously showed that LAIVs elicit a range of immune effectors and that successful induction of pulmonary cellular and humoral immunity in mice requires pulmonary replication of the vaccine virus. An upper respiratory tract immunization (URTI) model was developed in mice to mimic the human situation, in which the vaccine virus does not replicate in the lower respiratory tract, allowing us to assess the protective efficacy of an H5N1 LAIV against highly pathogenic H5N1 virus challenge in the absence of significant pulmonary immunity. Our results show that, after one dose of an H5N1 LAIV, pulmonary influenza-specific lymphocytes are the main contributors to clearance of challenge virus from the lungs and that contributions of influenza-specific enzyme-linked immunosorbent assay (ELISA) antibodies in serum and splenic CD8(+) T cells were negligible. Complete protection from H5N1 challenge was achieved after two doses of H5N1 LAIV and was associated with maturation of the antibody response. Although passive transfer of sera from mice that received two doses of vaccine prevented lethality in naive recipients following challenge, the mice showed significant weight loss, with high pulmonary titers of the H5N1 virus. These data highlight the importance of mucosal immunity in mediating optimal protection against H5N1 infection. Understanding the requirements for effective induction and establishment of these protective immune effectors in the respiratory tract paves the way for a more rational and effective vaccine approach in the future.  相似文献   

3.
Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems to both humans and livestock and of great economic impact worldwide. Oligodeoxynucleotides (ODN) which contain immunostimulatory CG motifs (CpG ODN) can promote Th1 responses, an adjuvant activity that is desirable for vaccination against intracellular pathogens. We investigated the feasibility of using CpG as an adjuvant combined with Toxoplasma lysate antigen (TLA) as a vaccine against toxoplasmosis. Genetically susceptible C57BL/6 mice were vaccinated with TLA with or without CpG ODN as an adjuvant and then challenged with 85 cysts of the moderately virulent RRA (Beverley) strain of T. gondii. Prior to challenge infection, immunization with TLA plus CpG ODN directed cellular and humoral immunity toward a Th1 pattern, characterized by enhanced INF gamma production by splenic cells in response to TLA, and enhanced production of toxoplasma-specific IgG and IgG (2a) antibodies. Consequently, CpG/TLA-treated mice showed prolonged survival and 64% reduction in brain parasite burden compared to non-CpG/TLA treated group. Our results suggest that CpG ODN would provide a stable and effective adjuvant for use in vaccination against toxoplasmosis.  相似文献   

4.
The relationship of the dose of vaccine to the immune response was determined in CF-1 mice vaccinated intraperitoneally with viable cells of the attenuated H37Ra strain of Mycobacterium tuberculosis and in mice vaccinated with cells of the same strain killed by autoclaving at 121 C for 15 min. The results showed, in terms of increased resistance to tuberculous infection, that the immune response with both living and killed cells was dependent upon the dose of vaccine, whereas only the living cells were dependent upon the time of challenge after vaccination. The dose response curves show dramatically that viable cells, which do not multiply in vivo, are several hundred times more effective immunizing agents against tuberculous infection than are autoclaved cells. Viable 2-week-old H37Ra cells were far more immunogenic than viable 4-week-old cells. Autoclaved 2-week-old cells, however, were no more immunogenic than autoclaved 4-week-old cells. H37Ra cells killed by boiling (98 C), exposure to 65 C for 30 min, treating with 2% phenol, or by being dried with acetone also lost most of their capacity to immunize mice. The effect of adjuvant on the immune response of mice to tuberculous infection was tested by incorporating both viable and autoclaved cells in Freund's incomplete adjuvant. We found that this vehicle had little or no effect on the immunizing capacity of either viable or heat-killed mycobacterial cells. The relationship of all the findings to the specificity of the immune response to tuberculosis is discussed.  相似文献   

5.
Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.  相似文献   

6.
The virulent RH strain of Toxoplasma gondii was attenuated after a few passages or just one long passage in mice immunized twice with a four-week interval between immunizations with an emulsion of Toxoplasma lysate antigens and complete Freund's adjuvant. Three avirulent strains, RH-cyst III, IV and VIII were established from the RH strain. The RH-cyst III strain was effective for vaccination against challenge with the original, virulent RH strain. The attenuation of T. gondii is an expression of the innate attributes of this parasite necessary to maintain its parasitic life cycle in nature.  相似文献   

7.
Recent events have raised concern over the use of pathogens, including variola virus, as biological weapons. Vaccination with Dryvax is associated with serious side effects and is contraindicated for many people, and the development of a safer effective smallpox vaccine is necessary. We evaluated an attenuated vaccinia virus, modified vaccinia virus Ankara (MVA), by use of a murine model to determine its efficacy against an intradermal (i.d.) or intranasal (i.n.) challenge with vaccinia virus (vSC8) or a recombinant vaccinia virus expressing murine interleukin-4 that exhibits enhanced virulence (vSC8-mIL4). After an i.d. challenge, 15 of 16 mice who were inoculated with phosphate-buffered saline developed lesions, one dose of intramuscularly administered MVA was partially protective (3 of 16 mice developed lesions), and the administration of two or three doses of MVA was completely protective (0 of 16 mice developed lesions). In unimmunized mice, an i.n. challenge with vSC8 caused a significant but self-limited illness, while vSC8-mIL4 resulted in lethal infections. Immunization with one or two doses of MVA prevented illness and reduced virus titers in mice who were challenged with either vSC8 or vSC8-mIL4. MVA induced a dose-related neutralizing antibody and vaccinia virus-specific CD8+-T-cell response. Mice immunized with MVA were fully protected from a low-dose vSC8-mIL4 challenge despite a depletion of CD4+ cells, CD8+ cells, or both T-cell subsets or an antibody deficiency. CD4+- or CD8+-T-cell depletion reduced the protection against a high-dose vSC8-mIL4 challenge, and the depletion of both T-cell subsets was associated with severe illness and higher vaccinia virus titers. Thus, MVA induces broad humoral and cellular immune responses that can independently protect against a molecularly modified lethal poxvirus challenge in mice. These data support the continued development of MVA as an alternative candidate vaccine for smallpox.  相似文献   

8.
The effect of an IFN-gamma mAb on the protective activity of immune T cells against Toxoplasma infection was examined in a murine model of toxoplasmosis. Mice that received anti-IFN-gamma antibody and immune spleen cells all died of toxoplasmosis after challenge with Toxoplasma tachyzoites. In contrast, mice that received normal IgG and immune spleen cells all survived the infection. The protective activity of Lyt-2+ immune T cells, previously shown to be the principal mediators of resistance against Toxoplasma in mice was completely ablated by the anti-IFN-gamma mAb. These results suggest that IFN-gamma is the major mediator of the resistance against Toxoplasma infection in mice which is conferred by immune T cells.  相似文献   

9.
Immunization of mice with a vaccine (ts-4) strain of Toxoplasma gondii is known to induce complete protection against subsequent lethal infection. Ts-4-mediated protection has been reported to be primarily dependent on IFN-gamma-producing CD8+ T cells. However, duration of CD8+ T cell-mediated immunity in the ts-4-vaccinated animals is not known. In the present study, the kinetics of the CD8+ T cell response in mice immunized with the ts-4 strain of T. gondii was evaluated. Optimal CD8+ T cell immunity persisted at least 6 mo after vaccination, and mice at this time point continued to overcome lethal challenge with a more virulent strain. However, at 9 mo postimmunization, CD8+ T cell immunity was severely diminished and the mice succumbed to Toxoplasma challenge. Pretreatment of animals, vaccinated 9 mo earlier, with rIL-15 prevented the mortality induced by Toxoplasma challenge. The protective effect of IL-15 treatment was due to a rise in the frequency of Ag-specific CD8+ T cells. CD8+ T cells from IL-15-administered animals showed increased proliferation and IFN-gamma production in response to antigenic restimulation. These findings suggest that rIL-15 can reverse the decline in the long-term CD8+ T cell immune response in mice immunized with vaccine strain of T. gondii.  相似文献   

10.
The parasite Toxoplasma gondii can infect most mammals and birds, sometimes causing severe pathology. Previous studies have reported that multi-antigenic vaccines were more effective than single-antigenic vaccine. It was also reported that the a single-gene vaccine with SAG1 or ROP2, GRA2 could only produce partial protection against T. gondii. In this study, we constructed a multi-antigenic DNA vaccine containing SAG1, ROP2 and GRA2, and evaluated its immune response. We used IL-12 as an adjuvant to enhance the immune response. We immunized BALB/c mice intramuscularly. After immunization, we evaluated the immune response using lymphocyte proliferation assay, cytokine and antibody measurements. The results showed that the group immunized with pcDNA3.1–SAG1–ROP2–GRA2 produced high Th1 immune response compared to other groups immunized with double-gene plasmid, empty plasmid or phosphate-buffered saline, respectively. Moreover, the co-immunization with IL-12 genes enhanced the immune response significantly and prolonged survival time. The current study showed that multi-antigenic DNA with IL-12 produced potent, effective and long-term protection against T. gondii challenge.  相似文献   

11.
Infection of the host by Toxoplasma gondii leads to an acute systemic dissemination of tachyzoites, followed by a chronic phase, in which bradyzoites, enclosed in cysts, persist in the brain, the heart, and other tissues. Among putative vaccine candidates, the bradyzoite antigens BAG1 and MAG1 look promising since they are preferentially expressed during the chronic stage of the parasite. This work focused on studying the immunogenicity of bradyzoite antigens in a mouse model of chronic toxoplasmosis. A mixture of plasmids directing the cytoplasmic expression of MAG1 and BAG1 in mammalian cells was used to immunize mice. We show here that immunized mice developed, preferentially, specific anti-MAG1 and anti-BAG1 IgG2a subclass antibodies, indicating a shift towards a Th1-like response after DNA immunization. We then demonstrated that DNA immunization followed by challenge infection elicited effective protection in mice, suggesting that bradyzoite antigens should be considered in the design of vaccines against toxoplasmosis.  相似文献   

12.
The major immunodominant surface antigen 1 (TgSAG1) of invasive tachyzoites is a vaccine candidate antigen for Toxoplasma gondii. In this study, we developed a recombinant pseudorabies virus (PRV) expressing TgSAG1 (rPRV/SAG1) based on the PRV vaccine strain Bartha K-61 by homologous recombination, in which partial PK and gG genes were deleted. The growth assay of rPRV/SAG1 showed that the recombinant virus can replicate in vitro as efficiently as PRV Bartha K-61, demonstrating that insertion of the TgSAG1 gene in the PK and gG locus of PRV does not affect the replication of PRV. All mice vaccinated with rPRV/SAG1 developed a high level of specific antibody responses against T. gondii lysate antigen (TLA), a strong increase of the splenocyte proliferative response, and significant levels of IFN-gamma and IL-2 production. And the immunization of mice with rPRV/SAG1 elicited strong cytotoxic T lymphocyte (CTL) responses in vitro. These results demonstrate that rPRV/SAG1 could induce significant humoral and cellular Th1 immune responses. Moreover, rPVR/SAG1 immunization induced partial protection (60%) against a lethal challenge with the highly virulent T. gondii RH strain, and neutralizing antibodies against PRV in a BALB/c mouse model. These results suggest that expression of protective antigens of T. gondii in PRV Bartha K-61 is a novel approach towards the development of a vaccine against both animal toxoplasmosis and pseudorabies.  相似文献   

13.
To evaluate vaccine efficacy in protecting against coxsackievirus A16 (CA16), which causes human hand, foot, and mouth disease (HFMD), we established the first neonatal mouse model. In this article, we report data concerning CA16-induced pathological changes, and we demonstrate that anti-CA16 antibody can protect mice against lethal challenge and that the neonatal mouse model could be used to evaluate vaccine efficacy. To establish a mouse model, a BJCA08/CA16 strain (at 260 50% lethal doses [LD50]) was isolated from a patient and used to intracerebrally (i.c.) inoculate neonatal mice. The infection resulted in wasting, hind-limb paralysis, and even death. Pathological examination and immunohistochemistry (IHC) staining indicated that BJCA08 had a strong tropism to muscle and caused severe necrosis in skeletal and cardiac muscles. We then found that BJCA08 pretreated with goat anti-G10/CA16 serum could significantly lose its lethal effect in neonatal mice. When the anti-G10 serum was intraperitoneally (i.p.) injected into the neonatal mice and, within 1 h, the same mice were intracerebrally inoculated with BJCA08, there was significant passive immunization protection. In a separate experiment, female mice were immunized with formaldehyde-inactivated G10/CA16 and BJCA08/CA16 and then allowed to mate 1 h after the first immunization. We found that there was significant protection against BJCA08 for neonatal mice born to the immunized dams. These data demonstrated that anti-CA16 antibody may block virus invasion and protect mice against lethal challenge, and that the neonatal mouse model was a viable tool for evaluating vaccine efficacy.  相似文献   

14.
Herpes simplex virus type 1 (HSV-1) produces oral lesions, encephalitis, keratitis, and severe infections in the immunocompromised host. HSV-1 is almost as common as HSV-2 in causing first episodes of genital herpes, a disease that is associated with an increased risk of human immunodeficiency virus acquisition and transmission. No approved vaccines are currently available to protect against HSV-1 or HSV-2 infection. We developed a novel HSV vaccine strategy that uses a replication-competent strain of HSV-1, NS-gEnull, which has a defect in anterograde and retrograde directional spread and cell-to-cell spread. Following scratch inoculation on the mouse flank, NS-gEnull replicated at the site of inoculation without causing disease. Importantly, the vaccine strain was not isolated from dorsal root ganglia (DRG). We used the flank model to challenge vaccinated mice and demonstrated that NS-gEnull was highly protective against wild-type HSV-1. The challenge virus replicated to low titers at the site of inoculation; therefore, the vaccine strain did not provide sterilizing immunity. Nevertheless, challenge by HSV-1 or HSV-2 resulted in less-severe disease at the inoculation site, and vaccinated mice were totally protected against zosteriform disease and death. After HSV-1 challenge, latent virus was recovered by DRG explant cocultures from <10% of vaccinated mice compared with 100% of mock-vaccinated mice. The vaccine provided protection against disease and death after intravaginal challenge and markedly lowered the titers of the challenge virus in the vagina. Therefore, the HSV-1 gEnull strain is an excellent candidate for further vaccine development.  相似文献   

15.
Vaccines are promising for the control of toxoplasmosis. Here, we evaluated the immunogenicity of 17 peptides derived from SAG1 surface protein of Toxoplasma gondii in CH3 mice. Only 8 of 16 peptides induced specific antibodies. After a lethal challenge, only the vaccination with 4 of 17 peptides that were from the carboxy terminal end of the protein conferred significant survival. Our work shows that vaccination with peptides from the carboxy-terminal positions of SAG1 major surface protein of Toxoplasma protects mice against a lethal challenge.  相似文献   

16.
Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneously, was previously shown to protect mice from a lethal vaginal HSV-2 challenge and to afford better protection than adjuvanted glycoprotein D (gD) in guinea pigs. Here we show that ACAM529 given via the intramuscular route affords significantly greater immunogenicity and protection in comparison with subcutaneous administration in the mouse vaginal HSV-2 challenge model. Further, we describe a side-by-side comparison of intramuscular ACAM529 with a gD vaccine across a range of challenge virus doses. While differences in protection against death are not significant, ACAM529 protects significantly better against mucosal infection, reducing peak challenge virus shedding at the highest challenge dose by over 500-fold versus 5-fold for gD. Over 27% (11/40) of ACAM529-immunized animals were protected from viral shedding while 2.5% (1/40) were protected by the gD vaccine. Similarly, 35% (7/20) of mice vaccinated with ACAM529 were protected from infection of their dorsal root ganglia while none of the gD-vaccinated mice were protected. These results indicate that measuring infection of the vaginal mucosa and of dorsal root ganglia over a range of challenge doses is more sensitive than evaluating survival at a single challenge dose as a means of directly comparing vaccine efficacy in the mouse vaginal challenge model. The data also support further investigation of ACAM529 for prophylaxis in human subjects.  相似文献   

17.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   

18.
A plasmid encoding Japanese encephalitis virus (JEV) prM and E proteins was constructed, and its efficacy as a candidate vaccine against JEV was evaluated in suckling mice. Groups of 10 BALB/c mice (5-7 days old) were immunized twice via muscular injection with this DNA vaccine, an empty vector or PBS at an interval of 3 weeks, and were challenged with a lethal dose of JEV 3 weeks after the second inoculation. Both cellular and humoral immune responses were examined before the challenge. Two animals from each group were sacrificed to detect the JEV-specific cytotoxic T lymphocyte activity. JEV-specific lactate dehydrogenase release in the DNA vaccine, empty vector and PBS groups was 37.5%, 18% and 8.5% respectively. JEV-specific antibody was detected in 8 of 10 animals in DNA vaccine group with a geometrical mean titer of 1: 28.3. The pooled serum from the same group also showed a neutralizing activity. Six of 8 mice in the DNA vaccine group survived the challenge, with a protection rate of 75%, but all the mice died in the two control groups. These results show that this JEV prM and E DNA vaccine is immunogenic and protective against JEV infection in the mouse model.  相似文献   

19.
Staphylococcus aureus is a major human pathogen and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. While S. aureus protective antigens have been identified in the literature, the majority have only been tested in a single animal model of disease. We wished to evaluate the ability of one S. aureus vaccine antigen to protect in multiple mouse models, thus assessing whether protection in one model translates to protection in other models encompassing the full breadth of infections the pathogen can cause. We chose to focus on genetically inactivated alpha toxin mutant HlaH35L. We evaluated the protection afforded by this antigen in three models of infection using the same vaccine dose, regimen, route of immunization, adjuvant, and challenge strain. When mice were immunized with HlaH35L and challenged via a skin and soft tissue infection model, HlaH35L immunization led to a less severe infection and decreased S. aureus levels at the challenge site when compared to controls. Challenge of HlaH35L-immunized mice using a systemic infection model resulted in a limited, but statistically significant decrease in bacterial colonization as compared to that observed with control mice. In contrast, in a prosthetic implant model of chronic biofilm infection, there was no significant difference in bacterial levels when compared to controls. These results demonstrate that vaccines may confer protection against one form of S. aureus disease without conferring protection against other disease presentations and thus underscore a significant challenge in S. aureus vaccine development.  相似文献   

20.
Doxorubicin (DOX), a potent chemotherapeutic agent, is widely used for the treatment of various malignancies. However, its clinical uses are limited due to its dose-dependent adverse effects particularly cardiac and testicular toxicities. DOX-induced toxicity is mainly due to the induction of oxidative stress. Atorvastatin (ATV), a 3-hydroxy 3-methyl glutaryl coenzyme A reductase inhibitor, with lipid-lowering activity, acts as an antioxidant at lower doses. It possesses pleiotropic effects independent of cholesterol-lowering property usually shown at lower doses, which include antioxidant and anti-inflammatory activities. The present study was aimed to investigate the possible protection exerted by atorvastatin against oxidative stress and DNA damage induced by DOX in the heart and testes of mice. The protective role of ATV in the heart and testes of DOX-treated mice was evident from the amelioration of oxidative stress, DNA and cellular damage. The present study clearly indicates that ATV offers a significant protection against DOX-induced oxidative stress and DNA damage in the heart and testes of mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号