首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein kinase B (PKB/AKT) is a promising and attractive therapeutic target in anticancer drug development. Herein, we report the findings of virtual screening for novel ATP-competitive inhibitors of AKT-2 using 2D- and 3D-similarity searching and sequential molecular docking with two crystal structures of AKT-2. Our multistep approach led to the identification of a low micromolar AKT-2 inhibitor (IC50 = 1.5 μM) with a novel scaffold. The experimentally validated inhibitor represents the starting point for an optimization program.  相似文献   

2.
VRAF murine sarcoma viral oncogene homologue B1 (BRAF) kinase has proved to be a promising target for the development of therapeutics for the treatment of a variety of human cancers. Here, we report the first example of a successful application of the structure-based virtual screening to identify novel BRAF inhibitors. These inhibitors have desirable physicochemical properties as a drug candidate, and compound 1 revealed a submicromolar binding affinity (0.7 μM). Therefore, they may serve as promising lead compounds for further development by structure-activity relationship (SAR) studies to optimize the inhibitory activities. Structural features relevant to the stabilization of the newly identified inhibitors in the ATP-binding site of BRAF are discussed in detail.  相似文献   

3.
Overexpression of the non-receptor tyrosine kinase Src is implicated in the development and progression of various human cancers. Blocking signalling pathways mediated by Src is believed to be a promising anticancer strategy. We report herein the discovery of novel small-molecule Src inhibitors by crystal structure-based virtual screening. A kinase-focused druglikeness rule was proposed and used in the design of compound library. Combination of large-scale docking with DOCK and rescoring with GOLD resulted in 6 hits with moderate to potent inhibitory activity against Src. Among them, compound 1 with an IC50 of 1.2 μM shows the most potent inhibitory activity. By using molecular docking, binding models of the top 3 hits (ranked by potency and ligand efficiency) with Src were constructed to provide a rational strategy that simultaneously exploits hydrogen bonding interaction in the hinge region and hydrophobic stacking in the back pocket. This approach is instructive and meaningful to further structure-based drug design of Src inhibitors.  相似文献   

4.
The inhibitors of phosphatase of regenerating liver-3 (PRL-3) have been shown to be useful as therapeutics for the treatment of cancer. We have been able to identify 12 novel PRL-3 inhibitors by means of the virtual screening with docking simulations under the consideration of the effects of ligand solvation in the scoring function. Because the newly identified inhibitors are structurally diverse and reveal a significant potency with IC(50) values ranging from 10 to 50muM, all of them can be considered for further development by structure-activity relationship or de novo design methods. Structural features relevant to the interactions of the newly identified inhibitors with the amino acid residues in the active site and the peripheral binding site of PRL-3 are discussed in detail.  相似文献   

5.
Janus kinase 2 (JAK2) plays a crucial role in the pathomechanism of myeloproliferative disorders and hematologic malignancies. A somatic mutation of JAK2 (Val617Phe) was previously shown to occur in 98% of patients with polycythemia vera and 50% of patients with essential thrombocythemia and primary myelofibrosis. Thus, effective JAK2 kinase inhibitors may be of significant therapeutic importance. Here, we applied a structure-based virtual screen to identify novel JAK2 inhibitors. One JAK2 inhibitor in particular, G6, demonstrated remarkable potency as well as specificity, which makes it as a potential lead candidate against diseases related to elevated JAK2 tyrosine kinase activity.  相似文献   

6.
Plasmepsin II (PM II) is an attractive target for anti-malaria drug discovery, which involves in host hemoglobin degradation in the acidic food vacuole. In this study, we demonstrated the successful use of structure-based virtual screening to identify inhibitors of PM II from two chemical database. Five novel non-peptide inhibitors were identified and revealed moderate inhibitory potencies with IC50 ranged from 4.62 ± 0.39 to 9.47 ± 0.71 μM. The detailed analysis of binding modes using docking simulations for five inhibitors showed that the inhibitors could be stabilized by forming multiple hydrogen bonds with catalytic residues (Asp 34 and Asp 214) and also with other key residues.  相似文献   

7.
Receptor protein tyrosine phosphatase sigma (PTPσ) has proved to be a promising target for the development of therapeutics for the treatment of neurological diseases. Here, we report the first example for a successful application of the structure-based virtual screening to identify the novel small-molecule inhibitors of PTPσ. These inhibitors revealed high potencies with the associated IC50 values ranging from 0.1 to 1.3 μM and were also screened for having desirable physicochemical properties as a drug candidate. Therefore, they deserve consideration for further development by structure–activity relationship studies to develop therapeutics for neurological diseases. Structural features relevant to the stabilization of the newly identified inhibitors in the active site of PTPσ are discussed in detail.  相似文献   

8.
Poly(ADP-ribose)polymerase-1 (PARP-1) is an abundant and ubiquitous chromatin-bound nuclear protein. PARP-1, a DNA repair enzyme, has been in the limelight as a chemotherapeutic target. In this study, we demonstrated the successful use of structure-based virtual screening to identify inhibitors of PARP-1 from Otava databases comprised of nearly 260,000 compounds. Five novel inhibitors belonging to thienopyrimidinone, isoquinolinoquinazolinone, pyrroloquinazolinone, and cyclopentenothienopyrimidinone scaffolds revealed inhibitory potencies with IC50 values ranged from 9.57 μM to 0.72 μM. Structural features relevant to the activity of these novel compounds within the active site of PARP-1 are discussed in detail and will guide future SAR investigation on these scaffolds.  相似文献   

9.
Acetylcholinesterase (AChE) is considered to be one of the most important targets for the treatment of Alzheimer's disease (AD). Previously our group has reported a series of tacrine-based hybrids as potent AChE inhibitors (AChEI). To discover more novel scaffolds, molecular docking and dynamics stimulation were applied to acquire the binding models of AChE with the most prominent compounds from our work. A structure-based pharmacophore model plus shape constraints was generated from the binding models and it was then employed to virtually screen commercial databases, giving a focused hit list of candidates. Subsequently, we scored the hit compounds by their molecular binding energies, which were calculated by MM/PBSA method. Fifteen compounds were selected and purchased for testing their anti-AChE effects, while seven of them showed inhibitory effects with IC(50) values ranging from 1.5 to 9.8 μM. The drug-like properties of these compounds, including LogD, AlogP, molecular volume and Lipinski rule of five, were also calculated. Compounds 12 and 16 (IC(50)=2.5 and 1.5 μM, respectively) exhibited potent activity and acceptable drug-like properties, thus might serve as leads for further modification. The data suggest that the presented model might be a valid approach for identification and development of new AChEIs.  相似文献   

10.
Bacterial protein secretion is a critical and complex process. The Sec machinery provides a major pathway for protein translocation across and integration into the cellular membrane in bacteria. Small molecule probes that perturb the functions of individual member proteins within the Sec machinery will be very important research tools as well as leads for future antimicrobial agent development. Herein we describe the discovery of inhibitors, through virtual screening, that specifically act on SecA ATPase, which is a critical member of the Sec system. These are the very first inhibitors reported for intrinsic SecA ATPase.  相似文献   

11.
12.
Inhibition of BCR-ABL tyrosine kinase activity has shown to be essential for the treatment of chronic myelogenous leukemia (CML). However, drug resistance has quickly arisen in recent clinical trials for STI571 (Gleevec), which is the first approved drug of CML by inhibiting ABL tyrosine kinase. It is desirable to develop new types of ABL tyrosine kinase inhibitors that may overcome this drug resistance problem. Here we present the discovery of novel inhibitors targeted at the catalytic domain of ABL tyrosine kinase by using three-dimensional database searching techniques. From a database containing 200,000 commercially available compounds, the top 1000 compounds with the best DOCK energy score were selected and subjected to structural diversity and drug likeness analysis, 15 compounds were submitted for biological assay. Eight out of the 15 showed inhibitory activity against K562 cells with IC(50) value ranging from 10 to 200 microM. Two promising compounds showed inhibition in further ABL tyrosine phosphorylation assay. It is anticipated that those two compounds can serve as lead compounds for further drug design and optimization.  相似文献   

13.
Parkinson’s disease is a severe debilitating neurodegenerative disorder. Recently, it was shown that the peroxisome proliferating-activator receptor-γ agonist pioglitazone protected mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity due to its ability to inhibit monoamine oxidase B (MAO-B). Docking studies were initiated to investigate pioglitazone’s interactions within the substrate cavity of MAO-B. Modeling studies indicated that the thiazolidinedione (TZD) moiety was a likely candidate for its specificity to MAO-B. To explore this potential novel MAO-B scaffold, we performed a structure-based virtual screen to identify additional MAO-B inhibitors. Our search identified eight novel compounds containing the TZD-moiety that allowed for a limited study to identify structural requirements for binding to MAO-B. Inhibition assays identified two TZDs (A6355 and L136662) which were found to inhibit recombinant human MAO-B with IC50 values of 82 and 195 nM, respectively.  相似文献   

14.
A series of indenopyrazoles 8 and 9 were designed and synthesized as EGFR tyrosine kinase inhibitors by in silico high-throughput screening. Compounds 8b and 8d showed significant inhibition of A431 cell growth (GI50 = 0.062 and 0.057 microM, respectively). Compounds 8b and 9a showed inhibitory activity toward both EGFR and VEGFR-2 (KDR) tyrosine kinases, whereas 8d inhibited VEGFR-2 tyrosine kinase, exclusively.  相似文献   

15.
Through structure-based virtual screening, some dozen of benzene sulfonamides with novel scaffolds are identified as potent inhibitors against carbonic anhydrase (CA) IX with IC50 values ranging from 2.86 to 588.34 nM. Among them, compounds 1 and 9 show high selectivity against tumor-target CA IX over CA II (the selectivity ratios are 21.3 and 136.6, respectively). The possible binding poses of hit compounds are also explored and the selectivity is elucidated by molecular docking simulations. The hit compounds discovered in this work would provide novel scaffolds for further hit-to-lead optimization.  相似文献   

16.
DNA methyltransferases are involved in diverse biological processes and abnormal methylation patterns play essential roles in cancer initiation and progression. DNA methyltransferase 3A (DNMT3A) acting as a de novo DNA methyltransferase, has gained widespread attention especially in haematological diseases. To date, large numbers of DNMTs inhibitors have been discovered, however, the small molecular inhibitors targeting DNMT3A are still in its infancy. In this study, structure-based virtual screening in combination with biological assays was performed to discovery potent novel DNMT3A inhibitors. Compound 40 and 40_3 displayed comparable in vitro inhibitory activity against DNMT3A with IC50 values of 46.5 μM and 41 μM, respectively. Further binding mode analysis suggested these molecules inhibit DNMT3A activity through binding the S-adenosyl-l-methionine (SAM) pocket. Overall, 40 and 40_3 may serve as novel scaffolds for further optimization and small molecular probes for investigating DNMT3A function.  相似文献   

17.
Novel thienoquinoline carboxamide-chalcone derivatives were prepared via the cyclization of acylated chalcones and 2-mercaptoquinoline-3-carbaldehyde in DMF with K2CO3. Thienoquinolines 9a–f, h exhibited promising antiproliferative effect against all the tested cell lines and gave a significant activity as EGFR inhibitors, with IC50 values ranging from 0.5 and 3.2?µM, and compounds 9e and 9f being the most active of the series. They also showed better activity than Erlotinib against melanoma cancer cell line A375. Moreover, compound 9f influenced pre G1 apoptosis and cell cycle arrest at G2/M phase. The binding mode of the best EGFR inhibitor 9e in the EGFR active site revealed that the thienoquinoline ring occupied the ATP-binding site while the chalcone moiety is located in the allosteric site and is responsible for the enhanced activity of these compounds.  相似文献   

18.
A novel class of 3-phenyl-2-styryl-3H-quinazolin-4-one Hsp90 inhibitors with in vitro anti-tumor activity are identified by structure-based virtual screening of a chemical database with docking simulations in the N-terminal ATP-binding site, in vitro ATPase assay using yeast Hsp90, and cell-based Her2 degradation assay in a consecutive fashion. These results exemplify the usefulness of the structure-based virtual screening with molecular docking in drug discovery. The structural features responsible for a tight binding of the inhibitors in the active site of Hsp90 are discussed in detail.  相似文献   

19.
Extracellular signal-regulated kinase 2 (ERK2) has become an attractive target for the development of therapeutics for the treatment of cancer. We have been able to identify eight new inhibitors of ERK2 by means of a drug design protocol involving the virtual screening with docking simulations and in vitro enzyme assay. The newly discovered inhibitors can be categorized into three structural classes and reveal a significant potency with IC(50) values ranging from 1 to 30 microM. Therefore, all of the three inhibitor scaffolds deserve further development by structure-activity relationship or de novo design methods. Structural features relevant to the stabilizations of the newly identified inhibitors in the ATP-binding site of ERK2 are discussed in detail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号