首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that pituitary adenylate cyclase-activating peptide (PACAP) stimulates enterochromaffin-like (ECL) cell histamine release, but its role in the regulation of gastric acid secretion is disputed. This work examines the effect of PACAP-38 on aminopyrine uptake in enriched rat parietal cells and on histamine release and acid secretion in the isolated vascularly perfused rat stomach and the role of PACAP in vagally (2-deoxyglucose) stimulated acid secretion in the awake rat. PACAP has no direct effect on the isolated parietal cell as assessed by aminopyrine uptake. PACAP induces a concentration-dependent histamine release and acid secretion in the isolated stomach, and its effect on histamine release is additive to gastrin. The histamine H2 antagonist ranitidine potently inhibits PACAP-stimulated acid secretion without affecting histamine release. Vagally stimulated acid secretion is partially inhibited by a PACAP antagonist. The results from the present study strongly suggest that PACAP plays an important role in the neurohumoral regulation of gastric acid secretion. Its effect seems to be mediated by the release of ECL cell histamine.  相似文献   

2.
A model for integrative study of human gastric acid secretion.   总被引:2,自引:0,他引:2  
We have developed a unique virtual human model of gastric acid secretion and its regulation in which food provides a driving force. Food stimulus triggers neural activity in central and enteric nervous systems and G cells to release gastrin, a critical stimulatory hormone. Gastrin stimulates enterochromaffin-like cells to release histamine, which, together with acetylcholine, stimulates acid secretion from parietal cells. Secretion of somatostatin from antral and corpus D cells comprises a negative-feedback loop. We demonstrate that although acid levels are most sensitive to food and nervous system inputs, somatostatin-associated interactions are also important in governing acidity. The importance of gastrin in acid secretion is greatest at the level of transport between the antral and corpus regions. Our model can be applied to study conditions that are not yet experimentally reproducible. For example, we are able to preferentially deplete antral or corpus somatostatin. Depletion of antral somatostatin exhibits a more significant elevation of acid release than depletion of corpus somatostatin. This increase in acid release is likely due to elevated gastrin levels. Prolonged hypergastrinemia has significant effects in the long term (5 days) by promoting enterochromaffin-like cell overgrowth. Our results may be useful in the design of therapeutic strategies for acid secretory dysfunctions such as hyper- and hypochlorhydria.  相似文献   

3.
The gastric enterochromaffin-like cell (ECL) has been studied in gastric fundic glands by confocal microscopy and as a purified cell preparation by video imaging of calcium signaling and measurements of histamine release. Regulation of gastric acid secretion is largely due to alterations of histamine activation of the H2 receptor on the parietal cell and can be divided into central neural regulation, with direct actions of neuronally released mediators and into peripheral regulation by substances released from other endocrine cells. Gastric neuronal stimulation of acid secretion by alteration of ECL cell function is probably mediated by pituitary adenylate cyclase activating peptide (PACAP) receptors on the ECL cell, which activate calcium signaling and histamine release. Peripheral stimulation of acid secretion via the ECL cell is largely mediated by gastrin stimulation of calcium signaling and histamine release. Gastric neuronal inhibition of ECL cell function is probably mediated by galanin inhibition of calcium signaling, and histamine release and peripheral inhibition of ECL cell function is mainly due to somatostatin release from D cells.  相似文献   

4.
Gastrin is the principal hormonal inducer of gastric acid secretion. The cellular targets for gastrin in the stomach are the acid-secreting parietal cell and histamine-producing enterochromaffin-like (ECL) cell. Gastrin is also a growth factor, with hypergastrinemia resulting in increased proliferation of gastric progenitor cells and a thickened mucosa. This review presents insights into gastrin function revealed by genetically engineered mouse models, demonstrating a new role for gastrin in the maturation of parietal and ECL cells. Thus, gastrin regulates many aspects of gastric physiology, with tight regulation of gastrin levels required to maintain balanced growth and function of gastric epithelial cells.  相似文献   

5.
Histamine plays an important role in the regulation of gastric acid secretion; however, its role in maintenance of gastric morphology remains unclear. To clarify the necessity of histamine for gastric mucosal development and maintenance, we evaluated two different kinds of mice that lacked either mast cells (one of the gastric histamine-producing cell types) or histidine decarboxylase (HDC; a histamine-synthesizing enzyme). Measurements of stomach weight, intragastric pH, mucosal histamine levels, as well as serum gastrin and albumin levels were performed in mice. Gastric mucosal appearance was examined by immunohistochemical techniques. Although gastric mucosal histamine levels in mast cell-deficient mice were half of those observed in the wild-type mice, intragastric pH, serum gastrin levels, and gastric morphology at 12 mo were unchanged compared with the wild-type mice. In contrast, HDC-deficient mice possessed no detectable gastric histamine, but did exhibit hypergastrinemia, as well as marked increases in intragastric pH and stomach weight compared with the wild-type mice. Histological analysis revealed that 9-mo-old HDC-deficient mice demonstrated hyperplasia in the oxyntic glandular base region, as well as increased numbers of parietal and enterochromaffin-like cells. These results indicate that enterochromaffin-like cell-derived histamine is potentially involved in gastric mucosal morphology regulation.  相似文献   

6.
Relationship of ECL cells and gastric neoplasia.   总被引:3,自引:0,他引:3  
The enterochromaffin-like (ECL) cell in the oxyntic mucosa has a key role in the regulation of gastric secretion since it synthesizes and releases the histamine regulating the acid secretion from the parietal cell. Gastrin is the main regulator of the ECL cell function and growth. Long-term hypergastrinemia induces ECL cell hyperplasia, and if continued, neoplasia. ECL cell carcinoids occur in man after long-term hypergastrinemia in conditions like pernicious anemia and gastrinoma. There is also accumulating evidence that a proportion of gastric carcinomas of the diffuse type is derived from the ECL cell. Furthermore, the ECL cell may, by producing substances with angiogenic effects (histamine and basic fibroblast growth factor), be particularly prone to develop malignant tumors. Although the general opinion is that gastrin itself has a direct effect on the oxyntic mucosal stem cell, it cannot be excluded that the general trophic effect of gastrin on the oxyntic mucosa is mediated by histamine or other substances from the ECL cell, and that the ECL cell, therefore, could play a role also in the tumorigenesis/carcinogenesis of gastric carcinomas of intestinal type.  相似文献   

7.
Divalent cation receptors have recently been identified in a wide variety of tissues and organs, yet their exact function remains controversial. We have previously identified a member of this receptor family in the stomach and have demonstrated that it is localized to the parietal cell, the acid secretory cell of the gastric gland. The activation of acid secretion has been classically defined as being regulated by two pathways: a neuronal pathway (mediated by acetylcholine) and an endocrine pathway (mediated by gastrin and histamine). Here, we identified a novel pathway modulating gastric acid secretion through the stomach calcium-sensing receptor (SCAR) located on the basolateral membrane of gastric parietal cells. Activation of SCAR in the intact rat gastric gland by divalent cations (Ca(2+) or Mg(2+)) or by the potent stimulator gadolinium (Gd(3+)) led to an increase in the rate of acid secretion through the apical H+,K+ -ATPase. Gd(3+) was able to activate acid secretion through the omeprazole-sensitive H+,K+ -ATPase even in the absence of the classical stimulator histamine. In contrast, inhibition of SCAR by reduction of extracellular cations abolished the stimulatory effect of histamine on gastric acid secretion, providing evidence for the regulation of the proton secretory transport protein by the receptor. These studies present the first example of a member of the divalent cation receptors modulating a plasma membrane transport protein and may lead to new insights into the regulation of gastric acid secretion.  相似文献   

8.
The regulation of acid secretion was clarified by the development of H2-receptor antagonists in the 1970s. It appears that gastrin and acetylcholine exert their effects on acid secretion mainly by stimulation of histamine release from the enterochromaffin-like (ECL) cell of the fundic gastric mucosa. The isolated ECL cell of rat gastric mucosa responds to gastrin/cholecystokinin (CCK), acetylcholine, and epinephrine with histamine release and to somatostatin and R-alpha-methyl histamine by inhibition of histamine release. Histamine and acetylcholine stimulate the parietal cell by elevation of cAMP or [Ca]i by activation of H2 or M3 receptors, respectively. These independent pathways converge to activate the gastric acid pump, the H+,K+ ATPase. Activation is a function of the association of the ATPase with a potassium chloride transport pathway that occurs in the membrane of the secretory canaliculus of the parietal cell. Hence the secretory canaliculus is the site of acid secretion, the acid being pumped into the lumen of the canaliculus. The pump is composed of two subunits, a large catalytic and a smaller glycosylated protein. This final step of acid secretion has become the target of drugs also designed to inhibit acid secretion. The target domain of the benzimidazole class of acid pump inhibitors is the extracytoplasmic domain of the pump that is secreting acid, and the target amino acids are the cysteines present in this domain. The secondary structure of the pump can be analyzed by determining trypsin-sensitive bonds in intact, cytoplasmic-side-out vesicles of the ATPase, and it has been shown that the alpha subunit has at least eight membrane-spanning segments. Omeprazole, the first acid pump inhibitor, forms a disulfide bond with cysteines in the extracytoplasmic loop between the fifth and sixth membrane-spanning segment and to a cysteine in the extracytoplasmic loop between the seventh and eight segments, preventing phosphorylation of the pump by ATP. As a result of the effective and long-lasting inhibition of acid secretion by the acid pump inhibitor, superior clinical results have been found in all forms of acid-related disease.  相似文献   

9.
10.
The neurohumoral pathways mediating intracisternal TRH-induced stimulation of gastric acid secretion were investigated. In urethane-anesthetized rats, with gastric and intrajugular cannulas, TRH or the analog [N-Val2]-TRH (1 microgram) injected intracisternally increased gastric acid output for 90 min. Serum gastrin levels were not elevated significantly. Under these conditions the TRH analog, unlike TRH, was devoid of thyrotropin-releasing activity as measured by serum TSH levels. In pylorus-ligated rats, gastrin values were not modified 2 h after peptide injection whereas gastric acid output was enhanced. TRH (0.1-1 micrograms) stimulated vagal efferent discharge, recorded from a multifiber preparation of the cervical vagus in urethane-anesthetized rats and the response was dose-dependent. The time course of vagal activation was well correlated with the time profile of gastric stimulation measured every 2 min. These results demonstrated that gastric acid secretory stimulation elicited by intracisternal TRH is not related to changes in circulating levels of gastrin or TSH but is mediated by the activation of efferent vagal pathways that stimulated parietal cell secretion.  相似文献   

11.
Many physiological functions of the stomach depend on an intact mucosal integrity; function reflects structure and vice versa. Histamine in the stomach is synthesized by histidine decarboxylase (HDC), stored in enterochromaffin-like (ECL) cells, and released in response to gastrin, acting on CCK(2) receptors on the ECL cells. Mobilized ECL cell histamine stimulates histamine H(2) receptors on the parietal cells, resulting in acid secretion. The parietal cells express H(2), M(3), and CCK(2) receptors and somatostatin sst(2) receptors. This review discusses the consequences of disrupting genes that are important for ECL cell histamine release and synthesis (HDC, gastrin, and CCK(2) receptor genes) and genes that are important for "cross-talk" between H(2) receptors and other receptors on the parietal cell (CCK(2), M(3), and sst(2) receptors). Such analysis may provide insight into the functional significance of gastric histamine.  相似文献   

12.
In view of the complexity of the regulation of gastric acid secretion, isolated parietal cells offer the appealing prospect of studying the receptors and mechanisms activating this cell after it has been removed from the confusing milieu of the intact mucosa. Histamine and cholinergic agents stimulate the function of canine parietal cells by interacting with typical H2 and muscarinic receptors. Gastrin produces only a small stimulation, interacting with a third, presumably specific, receptor. Combinations of histamine and carbachol and of histamine and gastrin produce potentiating interactions. When isolated parietal cells are treated with these combinations of agents, cimetidine and atropine display and apparent lack of specificity, reminiscent of that found in vivo, and probably resulting from interference with the histamine and cholinergic components of these potentiating interactions. The action of histamine, but not of carbachol or gastrin, is linked to stimulation of cyclic AMP production by parietal cells. Two potential inhibitors of acid secretion, secretin and prostaglandin E2, also stimulate cyclic AMP production, but these later effects appeared to occur largely in nonparietal cells. PGE2 however specifically inhibits histamine-stimulated parietal cell function, apparently by blocking activation of adenylate cyclase. Cholinergic action on the other hand is closely linked to enhanced influx of extracellular calcium.  相似文献   

13.
Gastric acid secretion is activated by two distinct pathways: a neuronal pathway via the vagus nerve and release of acetylcholine and an endocrine pathway involving gastrin and histamine. Recently, we demonstrated that activation of H(+)-K(+)-ATPase activity in parietal cells in freshly isolated rat gastric glands is modulated by the calcium-sensing receptor (CaSR). Here, we investigated if the CaSR is functionally expressed in freshly isolated gastric glands from human patients undergoing surgery and if the CaSR is influencing histamine-induced activation of H(+)-K(+)-ATPase activity. In tissue samples obtained from patients, immunohistochemistry demonstrated the expression in parietal cells of both subunits of gastric H(+)-K(+)-ATPase and the CaSR. Functional experiments using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein and measurement of intracellular pH changes allowed us to estimate the activity of H(+)-K(+)-ATPase in single freshly isolated human gastric glands. Under control conditions, H(+)-K(+)-ATPase activity was stimulated by histamine (100 microM) and inhibited by omeprazole (100 microM). Reduction of the extracellular divalent cation concentration (0 Mg(2+), 100 microM Ca(2+)) inactivated the CaSR and reduced histamine-induced activation of H(+)-K(+)-ATPase activity. In contrast, activation of the CaSR with the trivalent cation Gd(3+) caused activation of omeprazole-sensitive H(+)-K(+)-ATPase activity even in the absence of histamine and under conditions of low extracellular divalent cations. This stimulation was not due to release of histamine from neighbouring enterochromaffin-like cells as the stimulation persisted in the presence of the H(2) receptor antagonist cimetidine (100 microM). Furthermore, intracellular calcium measurements with fura-2 and fluo-4 showed that activation of the CaSR by Gd(3+) led to a sustained increase in intracellular Ca(2+) even under conditions of low extracellular divalent cations. These experiments demonstrate the presence of a functional CaSR in the human stomach and show that this receptor may modulate the activity of acid-secreting H(+)-K(+)-ATPase in parietal cells. Furthermore, our results show the viability of freshly isolated human gastric glands and may allow the use of this preparation for experiments investigating the physiological regulation and properties of human gastric glands in vitro.  相似文献   

14.
Mice lacking the cholecystokinin (CCK)-B/gastrin receptor have been generated by targeted gene disruption. The roles of this receptor in controlling gastric acid secretion and gastric mucosal growth have been assessed. The analysis of homozygous mutant mice vs. wild type included measurement of basal gastric pH, plasma gastrin concentrations as well as quantification of gastric mucosal cell types by immunohistochemistry. Mutant mice exhibited a marked increase in basal gastric pH (from 3.2 to 5.2) and about a 10-fold elevation in circulating carboxyamidated gastrin compared with wild-type controls. Histologic analysis revealed a decrease in both parietal and enterochromaffin-like (ECL) cells, thus explaining the reduction in acid output. Consistent with the elevation in circulating gastrin, antral gastrin cells were increased in number while somatostatin cells were decreased. These data support the importance of the CCK-B/gastrin receptor in maintaining the normal cellular composition and function of the gastric mucosa.  相似文献   

15.
16.
Hypoacidity and hypergastrinaemia have been reported in the newborn human. However, little is known about in utero gastric acid secretion, and the relationship to fetal plasma gastrin levels. The longitudinal pattern of development of basal and stimulated gastric acid secretion in the non-anaesthetized fetal sheep has been studied during the last 45 days of gestation. Fetuses had cannulae inserted into the jugular vein, carotid artery and stomach. Gastric juice and blood was sampled daily from 101 days gestation until birth (145 days). Intermittent basal acid secretion began between 120 and 133 days of gestation. These fluctuations in gastric juice pH continued until birth. Overall there was a decline in gastric pH from 7.5 +/- 0.2 (SEM), for fetuses 101-105 days to 4.3 +/- 0.5 by 131-135 days. Mean fetal plasma gastrin was higher than maternal levels after 111-115 days but no correlation between fetal plasma gastrin levels and gastric pH could be demonstrated. Pentagastrin and histamine infusion did not stimulate acid secretion in fetuses younger than 115 days. After this age the fetuses became responsive to both pentagastrin and histamine. In contrast, cholinergic stimulation, using bethanechol, did not stimulate acid production until 10 to 15 days later, suggesting a hierarchy in the development of the control of acid secretion in the fetus. The lack of response to endogenous gastrin and the hierarchy in the control of acid secretion suggest either a lack of receptors on the parietal cell or the presence of an inhibitor of acid secretion. These studies are relevant to human physiology since the present findings show that the sheep and human have a similar gastrin/acid profile at birth.  相似文献   

17.
We examined the role of prostaglandin E (EP) receptor subtypes in the regulation of gastric acid secretion in the rat. Under urethane anesthesia, the stomach was superfused with saline, and the acid secretion was determined at pH 7.0 by adding 50 mM NaOH. The acid secretion was stimulated by intravenous infusion of histamine or pentagastrin. Various EP agonists were administered intravenously, whereas EP antagonists were given subcutaneously 30 min or intravenously 10 min before EP agonists. PGE(2) suppressed the acid secretion stimulated by either histamine or pentagastrin in a dose-dependent manner. The acid inhibitory effect of PGE(2) was mimicked by sulprostone (EP(1)/EP(3) agonist) but not butaprost (EP(2) agonist) or AE1-329 (EP(4) agonist). The inhibitory effect of sulprostone, which was not affected by ONO-8711 (EP(1) antagonist), was more potent against pentagastrin- (50% inhibition dose: 3.6 mug/kg) than histamine-stimulated acid secretion (50% inhibition dose: 18.0 mug/kg). Pentagastrin increased the luminal release of histamine, and this response was also inhibited by sulprostone. On the other hand, AE1-329 (EP(4) agonist) stimulated the acid secretion in vagotomized animals with a significant increase in luminal histamine. This effect of AE1-329 was totally abolished by cimetidine as well as AE3-208 (EP(4) antagonist). These results suggest that PGE(2) has a dual effect on acid secretion: inhibition mediated by EP(3) receptors and stimulation through EP(4) receptors. The former effect may be brought about by suppression at both parietal and enterochromaffin-like cells, whereas the latter effect may be mediated by histamine released from enterochromaffin-like cells.  相似文献   

18.
Summary Treatment of chickens, hamsters and guinea-pigs with large doses of the long-acting antisecretory agent omeprazole for 10 weeks resulted in elevated serum gastrin levels and in increased stomach weight and mass of oxyntic mucosa. Also the antral gastrin cell density was increased. Another striking effect was the hyperplasia of the histamine-producing enterochromaffin-like (ECL) cells — a prominent endocrine cell population with unknown function — in the oxyntic mucosa. Accordingly, the gastric mucosal histamine concentration and rate of histamine formation were increased in all three species. The results suggest that marked and long-lasting suppression of acid secretion leads to elevated serum gastrin levels and diffuse ECL cell hyperplasia not only in the rat, as previously seen, but also in the chicken, hamster and guinea-pig; this hyperplasia is associated with accelerated histamine formation in all three species. The following sequence of events is suggested to occur in mammalian as well as submammalian vertebrates: suppression of acid secretion — hypergastrinaemia — ECL cell hyperplasia.  相似文献   

19.
This review deals with the analysis of the modern literature concerning molecular mechanisms of secretory activity of gastric mucosa cells and their importance during development of different pathologies. Gastric acid secretion is regulated by paracrine, endocrine and neural systems. The result of these systems functioning at the molecular level is signal transduction pathways activation by histamine, acetylcholine, gastrin and other mediators. Coupling of these agents with specific receptors located on the basolateral plasma membrane of parietal cells modulates acid secretion. It was shown that protein phosphorylation enzymes play the significant role in realization of functional and proliferative activity of the stomach secretory cells in physiological and pathological states. The key role of tyrosine protein kinases associated with growth factors is considered, which take part in regulation of acid secretion, have trophic influence on mucosa cells, protect it from acute injuries, stimulate cell proliferation and accelerate ulcer healing.  相似文献   

20.
In this work we re-examine an existing model of gastric acid secretion. The model is a 2-compartment model of the human stomach accounting for regions where relevant cells (D, G, ECL and parietal cells) and proteins and acid they secrete (somatostatin, gastrin, histamine, and gastric acid, respectively) are found. These proteins compose a positive and negative feedback system that controls the secretion of gastric acid by parietal cells. The original model consists of 18 ordinary differential equations and yields a stable 3-period limit cycle solution. We modify the existing model by introducing a delay into the system and assuming that the cell populations are in steady state over a short-time window (<300 h) and are able to reduce the system to an 8-equation delay differential equation model. In addition to demonstrating congruency between the two models, we also show that a similar stability is only reproducible when the delay in gastrin transport is approximately 30 min. This suggests that gastric acid secretion homeostasis likely depends strongly on the delay in gastrin transport from the antrum to the corpus. Equal contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号