首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is an attractive target for small molecule drug discovery. We previously showed that O-linked triazolopyridazines can be potent inhibitors of c-Met. Herein, we report the discovery of a related series of N-linked triazolopyridazines which demonstrate nanomolar inhibition of c-Met kinase activity and display improved pharmacodynamic profiles. Specifically, the potent time-dependent inhibition of cytochrome P450 associated with the O-linked triazolopyridazines has been eliminated within this novel series of inhibitors. N-linked triazolopyridazine 24 exhibited favorable pharmacokinetics and displayed potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver PD model. Once-daily oral administration of 24 for 22 days showed significant tumor growth inhibition in an NIH-3T3/TPR-Met xenograft mouse efficacy model.  相似文献   

2.
Deregulation of receptor tyrosine kinase c-Met has been reported in human cancers and is considered as an attractive target for small molecule drug discovery. In this study, a series of 4-phenoxyquinoline derivatives bearing sulfonylurea moiety were designed, synthesized and evaluated for their c-Met kinase inhibition and cytotoxicity against tested four cell lines in vitro. The pharmacological data indicated that most of the tested compounds showed moderate to significant potency as compared with foretinib, with the most promising compound 13x (c-Met kinase IC50 = 1.98 nM) demonstrated relatively good selectivity versus 10 other tyrosine kinases and remarkable cytotoxicities against HT460, MKN-45, HT-29 and MDA-MB-231 with IC50 values of 0.055 µM, 0.064 µM, 0.16 µM and 0.49 µM, respectively. The preliminary structure activity relationships indicated that a sulfonylurea moiety as linker as well as mono-EGWs (such as R1 = 4-F) on the terminal phenyl rings contributed to the antitumor activity.  相似文献   

3.
Abstract

C-Met plays a crucial role in the development and progression of neoplastic disease. Type II c-Met inhibitors recognise the inactive DFG-out conformation of the kinase, result in better anti-tumour effects due to synergistic effect against the other kinases. According to our previous works, an (E)-N'-benzylidene group was selected as the initial fragment. Two series of (E)-N'-benzylidene hydrazides were designed by fragment growth method. The inhibitory activities were in vitro investigated against c-Met and VEGFR-2. Compound 10b exhibited the most potent inhibitory activity against the c-Met inhibitor (IC50 = 0.37?nM). Compound 11b exhibited multi-target c-Met kinase inhibitory activity as a potential type II c-Met inhibitor (IC50 = 3.41?nM against c-Met; 25.34?nM against VEGFR-2). The two compounds also demonstrate the feasibility of fragment-based virtual screening method for drug discovery.  相似文献   

4.
c-Met is a receptor tyrosine kinase often deregulated in human cancers, thus making it an attractive drug target. One mechanism by which c-Met deregulation leads to cancer is through gain-of-function mutations. Therefore, small molecules capable of targeting these mutations could offer therapeutic benefits for affected patients. SU11274 was recently described and reported to inhibit the activity of the wild-type and some mutant forms of c-Met, whereas other mutants are resistant to inhibition. We identified a novel series of c-Met small molecule inhibitors that are active against multiple mutants previously identified in hereditary papillary renal cell carcinoma patients. AM7 is active against wild-type c-Met as well as several mutants, inhibits c-Met-mediated signaling in MKN-45 and U-87 MG cells, and inhibits tumor growth in these two models grown as xenografts. The crystal structures of AM7 and SU11274 bound to unphosphorylated c-Met have been determined. The AM7 structure reveals a novel binding mode compared with other published c-Met inhibitors and SU11274. The molecule binds the kinase linker and then extends into a new hydrophobic binding site. This binding site is created by a significant movement of the C-helix and so represents an inactive conformation of the c-Met kinase. Thus, our results demonstrate that it is possible to identify and design inhibitors that will likely be active against mutants found in different cancers.  相似文献   

5.
It is now widely recognized that the flexibility of both partners has to be considered in molecular docking studies. However, the question how to handle the best the huge computational complexity of exploring the protein binding site landscape is still a matter of debate. Here we investigate the flexibility of c-Met kinase as a test case for comparing several simulation methods. The c-Met kinase catalytic site is an interesting target for anticancer drug design. In particular, it harbors an unusual plasticity compared with other kinases ATP binding sites. Exploiting this feature may eventually lead to the discovery of new anticancer agents with exquisite specificity. We present in this article an extensive investigation of c-Met kinase conformational space using large-scale computational simulations in order to extend the knowledge already gathered from available X-ray structures. In the process, we compare the relevance of different strategies for modeling and injecting receptor flexibility information into early stage in silico structure-based drug discovery pipeline. The results presented here are currently being exploited in on-going virtual screening investigations on c-Met.  相似文献   

6.
A series of novel quinoxaline derivatives were synthesized and evaluated for their inhibitory activity against c-Met kinase enzyme. Most of the tested compounds exhibited potent inhibitory activity. All the synthesized quinoxaline compounds were further examined against c-Met overexpressed human gastric cancer cell line (MKN-45), which showed good inhibitory activity. Among the synthesized compounds, compound 4 exhibited better tumor growth inhibition in the animal model study; we also confirmed its acceptable drug property and highly selective target activity.  相似文献   

7.
In continuing our efforts to identify small molecules able to inhibit c-Met kinase, three series of novel 6,7-disubstituted-4-phenoxyquinoline derivatives (23aw, 26ad and 30ad) bearing (thio)semicarbazone scaffold were designed, synthesized and evaluated for their cytotoxicity. The biological data revealed that most compounds exhibited moderate-to-excellent activity against HT-29, MKN-45, A549 cancer cell lines and relative poor potency toward MDA-MB-231 cell as well as hardly any cytotoxicity in normal PBL cell. Eleven compounds were further examined for their inhibitory activity against c-Met kinase and three compounds (23h, 23n and 26a) demonstrated good inhibitory activity. This work resulted in the discovery of a potent c-Met inhibitor 23n, bearing 2-hydroxy-3-allylphenyl group at R2 moiety, as a valuable lead molecule, which possessed remarkable cytotoxicity and high selectivity against A549 and HT-29 cell lines with IC50 values of 11 nM and 27 nM. Besides, it displayed excellent c-Met kinase inhibition on a single-digital nanomolar level (IC50 = 1.54 nM). Meanwhile, the results from preliminarily in vivo study reflected that compound 23n showed promising overall PK profiles, consistent with the efficacy in both MKN-45 and HT-29 tumor xenograft mice model. These results clearly indicated that compound 23n is a potent and highly selective c-Met inhibitor and its favorable in vitro and in vivo profiles warrant further investigation.  相似文献   

8.
The receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), modulate signaling cascades implicated in cellular proliferation, survival, migration, invasion, and angiogenesis. Therefore, dysregulation of HGF/c-Met signaling can compromise the cellular capacity to moderate these activities and can lead to tumorigenesis, metastasis, and therapeutic resistance in various human malignancies. To facilitate studies investigating HGF/c-Met receptor coupling or c-Met signaling events in real time and in living cells and animals, here we describe a genetically engineered reporter where bioluminescence can be used as a surrogate for c-Met tyrosine kinase activity. c-Met kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to the activation or inhibition of the HGF/c-Met signaling pathway. Treatment of tumor-bearing animals with a c-Met inhibitor and the HGF neutralizing antibody stimulated the reporter’s bioluminescence activity in a dose-dependent manner and led to a regression of U-87 MG tumor xenografts. Results obtained from these studies provide unique insights into the pharmacokinetics and pharmacodynamics of agents that modulate c-Met activity and validate c-Met as a target for human glioblastoma therapy.  相似文献   

9.
Backgroundc-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.MethodsWe utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.ResultsWe have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that combination therapy with PHA665752 and Gefitinib (an EGFR inhibitor) significantly reduced cell viability and increased apoptosis compared with either PHA665752 or Gefitinib treatment alone.Conclusionc-Met inhibition monotherapy is not sufficient to eliminate c-Met+ HCC tumor growth. Inhibition of both c-Met and EGFR oncogenic pathways provides superior suppression of HCC tumor growth. Thus, combination of c-Met and EGFR inhibition may represent a superior therapeutic regimen for c-Met+ HCC.  相似文献   

10.
In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC50 = 31.70 μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC50 values in the range 0.01–1.86 µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC50 = 4.31 µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives.  相似文献   

11.
We report here the discovery of a novel series of selective mTOR kinase inhibitors. A series of imidazo[4,5-b]pyrazin-2-ones, represented by screening hit 1, was developed into lead compounds with excellent mTOR potency and exquisite kinase selectivity. Potent compounds from this series show >1000-fold selectivity over the related PI3Kα lipid kinase. Further, compounds such as 2 achieve mTOR pathway inhibition, blocking both mTORC1 and mTORC2 signaling, in PC3 cancer cells as measured by inhibition of pS6 and pAkt (S473).  相似文献   

12.
A series of hydroxybenzoxazole derivatives was synthesized, and their c-Met kinase inhibitory activity was evaluated. Described herein is a potent c-Met inhibitor by structural modification of the parent benzoxazole scaffold, with particular focus on the hydroxyl substituent of the benzoxazole moiety.  相似文献   

13.
c-Met kinase has been considered as an attractive target for developing antitumor agents. The strong interactions between Tyr1230 and the inhibitors emphasized its importance for ligand binding. The clinically related Tyr1230 mutations have made negative impacts on current c-Met kinase inhibitors, especially the exquisitely selective ones, like PF-04217903, while the multi-targeted inhibitors, like Crizotinib, were not affected so much. In this study, the protein–ligand interactions between c-Met kinase domain (wild, Y1230C and Y1230H) and these inhibitors were compared. The binding site was expanded and the post-mutated regions became solvent accessible. The heavy dependency of PF-04217903 on the interactions with Tyr1230 resulted in the steep decrease of its potency against the Y1230 mutants. It was found that the ligand entrance region contributed consistently to the binding of Crizotinib, but not PF-04217903. Additional groups substituted in the ligand entrance region with stable interactions should be beneficial for improving the inhibitory activity of PF-04217903 against the Y1230 mutants. These findings will facilitate the discovery of potent inhibitors against Y1230 mutated c-Met kinase.  相似文献   

14.
A series of N′-(2-oxoindolin-3-ylidene)hydrazide derivatives were identified as moderately potent inhibitors against c-Met kinase by pharmacophore-based virtual screening and chemical synthesis methods. The structure-activity relationship (SAR) at various positions of the scaffold was investigated and its binding mode with c-Met kinase was analyzed by molecular modeling studies. In this study, two potent compounds D2 and D25, with IC50 value at 1.3 μM and 2.2 μM against c-Met kinase respectively, were identified. Finally, based on the clues extracted from this study, future development for the optimization of this scaffold was discussed.  相似文献   

15.
Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.  相似文献   

16.
Receptor tyrosine kinases (RTK) and their ligands control critical biologic processes, such as cell proliferation, migration, and differentiation. Aberrant expression of these receptor kinases in tumor cells alters multiple downstream signaling cascades that ultimately drive the malignant phenotype by enhancing tumor cell proliferation, invasion, metastasis, and angiogenesis. As observed in human glioblastoma (hGBM) and other cancers, this dysregulation of RTK networks correlates with poor patient survival. Epidermal growth factor receptor (EGFR) and c-Met, two well-known receptor kinases, are coexpressed in multiple cancers including hGBM, corroborating that their downstream signaling pathways enhance a malignant phenotype. The integration of c-Met and EGFR signaling in cancer cells indicates that treatment regimens designed to target both receptor pathways simultaneously could prove effective, though resistance to tyrosine kinase inhibitors continues to be a substantial obstacle. In the present study, we analyzed the antitumor efficacy of EGFR inhibitors erlotinib and gefitinib and c-Met inhibitor PHA-665752, along with their respective small hairpin RNAs (shRNAs) alone or in combination with human umbilical cord blood stem cells (hUCBSCs), in glioma cell lines and in animal xenograft models. We also measured the effect of dual inhibition of EGFR/c-Met pathways on invasion and wound healing. Combination treatments of hUCBSC with tyrosine kinase inhibitors significantly inhibited invasion and wound healing in U251 and 5310 cell lines, thereby indicating the role of hUCBSC in inhibition of RTK-driven cell behavior. Further, the EGFR and c-Met localization in glioma cells and hGBM clinical specimens indicated that a possible cross talk exists between EGFR and c-Met signaling pathway.  相似文献   

17.
We report a series of phenyl substituted pyridazin-3-ones substituted with morpholino-pyrimidines. The SAR of the phenyl was explored and their c-Met kinase and cell-based inhibitory activity toward c-Met driven cell lines were evaluated. Described herein is a potent c-Met inhibitor by structural modification of the parent morpholino-pyridazinone scaffold, with particular focus on the phenyl and pyrimidine substituents.  相似文献   

18.
Targeting cancers with amplified or abnormally activated c-Met (hepatocyte growth factor receptor) may have therapeutic benefit based on nonclinical and emerging clinical findings. However, the eventual emergence of drug resistant tumors motivates the pre-emptive identification of potential mechanisms of clinical resistance. We rendered a MET amplified gastric cancer cell line, GTL16, resistant to c-Met inhibition with prolonged exposure to a c-Met inhibitor, PF-04217903 (METi). Characterization of surviving cells identified an amplified chromosomal rearrangement between 7q32 and 7q34 which overexpresses a constitutively active SND1-BRAF fusion protein. In the resistant clones, hyperactivation of the downstream MAPK pathway via SND1-BRAF conferred resistance to c-Met receptor tyrosine kinase inhibition. Combination treatment with METi and a RAF inhibitor, PF-04880594 (RAFi) inhibited ERK activation and circumvented resistance to either single agent. Alternatively, treatment with a MEK inhibitor, PD-0325901 (MEKi) alone effectively blocked ERK phosphorylation and inhibited cell growth. Our results suggest that combination of a c-Met tyrosine kinase inhibitor with a BRAF or a MEK inhibitor may be effective in treating resistant tumors that use activated BRAF to escape suppression of c-Met signaling.  相似文献   

19.
The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives based on our lead NCI 748494/1, possessing different N-linkers to aromatic and heterocyclic rings. In addition, a molecular hybrid series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-mercaptopurine (6-MP) was synthesized in order to explore its “double-drug” antitumor effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antitumor activity. Compound 3d showed potent inhibitory activity more than reference Foretinib, BMS-777607 and NCI 748494/1 with IC50 values in the range 0.01–0.31 µM against the cancer cell lines. The calculated IC50 of 3d against c-Met kinase was found to be 2.71 µM, which is more potent than NCI 748494/1 (IC50 = 31.70 µM). Docking studies were performed to identify the binding mode of 3d with c-Met kinase domain in comparison to moderate and weak derivatives. The present study clearly demonstrates that 1,2,4-triazine ring exhibits promising antitumor activity and the double-drug optimization strategy led to identifying 3d as a potent c-Met kinase inhibitor suitable for further development.  相似文献   

20.
Mesenchymal epithelial transition factor (c-Met) is an attractive target for cancer therapy. Three-dimensional pharmacophore hypotheses were built based on a set of known structurally diverse c-Met inhibitors. The best pharmacophore model, which identified inhibitors with an associated correlation coefficient of 0.983 between their experimental and estimated IC(50) values, consisted of two hydrogen-bond acceptors, one hydrophobic, and one ring aromatic feature. The highly predictive power of the model was rigorously validated by test set prediction and Fischer's randomization method. The high values of enrichment factor and receiver operating characteristic (ROC) score indicated the model performed fairly well at distinguishing active from inactive compounds. The model was then applied to screen compound database for potential c-Met inhibitors. A filtering protocol, including druggability and molecular docking, were also applied in hits selection. The final 38 molecules, which exhibited good estimated activities, desired binding mode and favorable drug likeness were identified as potential c-Met inhibitors. Their novel backbone structures could be served as scaffolds for further study, which may facilitate the discovery and rational design of potent c-Met kinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号