首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Next‐generation sequencing (NGS) is emerging as an efficient and cost‐effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi‐genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross‐species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low‐coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species‐level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles.  相似文献   

2.
3.
Target sequence capture is an efficient technique to enrich specific genomic regions for high‐throughput sequencing in ecological and evolutionary studies. In recent years, many sequence capture approaches have been proposed, but most of them rely on commercial synthetic baits which make the experiment expensive. Here, we present a novel sequence capture approach called AFLP‐based genome sequence capture (AFLP Capture). This method uses the AFLP (amplified fragment length polymorphism) technique to generate homemade capture baits without the need for prior genome information, thus is applicable to any organisms. In this approach, biotinylated AFLP fragments representing a random fraction of the genome are used as baits to capture the homologous fragments from genomic shotgun sequencing libraries. In a trial study, by using AFLP Capture, we successfully obtained 511 orthologous loci (>700,000 bp in total length) from 11 Odorrana species and more than 100,000 single nucleotide polymorphisms (SNPs) in four analyzed individuals of an Odorrana species. This result shows that our method can be used to address questions of various evolutionary depths (from interspecies level to intraspecies level). We also discuss the flexibility in bait preparation and how the sequencing data are analyzed. In summary, AFLP Capture is a rapid and flexible tool and can significantly reduce the experimental cost for phylogenetic studies that require analyzing genome‐scale data (hundreds or thousands of loci).  相似文献   

4.
5.
Recent advances in high‐throughput sequencing library preparation and subgenomic enrichment methods have opened new avenues for population genetics and phylogenetics of nonmodel organisms. To multiplex large numbers of indexed samples while sequencing predominantly orthologous, targeted regions of the genome, we propose modifications to an existing, in‐solution capture that utilizes PCR products as target probes to enrich library pools for the genomic subset of interest. The sequence capture using PCR‐generated probes (SCPP) protocol requires no specialized equipment, is highly flexible and significantly reduces experimental costs for projects where a modest scale of genetic data is optimal (25–100 genomic loci). Our alterations enable application of this method across a wider phylogenetic range of taxa and result in higher capture efficiencies and coverage at each locus. Efficient and consistent capture over multiple SCPP experiments and at various phylogenetic distances is demonstrated, extending the utility of this method to both phylogeographic and phylogenomic studies.  相似文献   

6.
The proliferation of genomic sequencing approaches has significantly impacted the field of phylogenetics. Target capture approaches provide a cost-effective, fast and easily applied strategy for phylogenetic inference of non-model organisms. However, several existing target capture processing pipelines are incapable of incorporating whole genome sequencing (WGS). Here, we develop a new pipeline for capture and de novo assembly of the targeted regions using whole genome re-sequencing reads. This new pipeline captured targeted loci accurately, and given its unbiased nature, can be used with any target capture probe set. Moreover, due to its low computational demand, this new pipeline may be ideal for users with limited resources and when high-coverage sequencing outputs are required. We demonstrate the utility of our approach by incorporating WGS data into the first comprehensive phylogenomic reconstruction of the freshwater mussel family Margaritiferidae. We also provide a catalogue of well-curated functional annotations of these previously uncharacterized freshwater mussel-specific target regions, representing a complementary tool for scrutinizing phylogenetic inferences while expanding future applications of the probe set.  相似文献   

7.
One of the major challenges for researchers studying phylogeography and shallow-scale phylogenetics is the identification of highly variable and informative nuclear loci for the question of interest. Previous approaches to locus identification have generally required extensive testing of anonymous nuclear loci developed from genomic libraries of the target taxon, testing of loci of unknown utility from other systems, or identification of loci from the nearest model organism with genomic resources. Here, we present a fast and economical approach to generating thousands of variable, single-copy nuclear loci for any system using next-generation sequencing. We performed Illumina paired-end sequencing of three reduced-representation libraries (RRLs) in chorus frogs (Pseudacris) to identify orthologous, single-copy loci across libraries and to estimate sequence divergence at multiple taxonomic levels. We also conducted PCR testing of these loci across the genus Pseudacris and outgroups to determine whether loci developed for phylogeography can be extended to deeper phylogenetic levels. Prior to sequencing, we conducted in silico digestion of the most closely related reference genome (Xenopus tropicalis) to generate expectations for the number of loci and degree of coverage for a particular experimental design. Using the RRL approach, we: (i) identified more than 100,000 single-copy nuclear loci, 6339 of which were obtained for divergent conspecifics and 904 of which were obtained for heterospecifics; (ii) estimated average nuclear sequence divergence at 0.1% between alleles within an individual, 1.1% between conspecific individuals that represent two different clades, and 1.8% between species; and (iii) determined from PCR testing that 53% of the loci successfully amplify within-species and also many amplify to the genus-level and deeper in the phylogeny (16%). Our study effectively identified nuclear loci present in the genome that have levels of sequence divergence on par with mitochondrial loci commonly used in phylogeography. Specifically, we estimated that ~7% of loci in the chorus frog genome are >3% divergent within species; this translates to a prediction of approximately 50,000 single-copy loci in the genome with >3% divergence. Moreover, successful amplification of many loci at deeper phylogenetic levels indicates that the RRL approach represents an efficient method for rapid identification of informative loci for both phylogenetics and phylogeography. We conclude by making recommendations for minimizing the cost and maximizing the efficiency of locus identification for future studies in this field.  相似文献   

8.
9.
Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications.  相似文献   

10.
Next-generation sequencing technologies (NGS) have revolutionized biological research by significantly increasing data generation while simultaneously decreasing the time to data output. For many ecologists and evolutionary biologists, the research opportunities afforded by NGS are substantial; even for taxa lacking genomic resources, large-scale genome-level questions can now be addressed, opening up many new avenues of research. While rapid and massive sequencing afforded by NGS increases the scope and scale of many research objectives, whole genome sequencing is often unwarranted and unnecessarily complex for specific research questions. Recently developed targeted sequence enrichment, coupled with NGS, represents a beneficial strategy for enhancing data generation to answer questions in ecology and evolutionary biology. This marriage of technologies offers researchers a simple method to isolate and analyze a few to hundreds, or even thousands, of genes or genomic regions from few to many samples in a relatively efficient and effective manner. These strategies can be applied to questions at both the infra- and interspecific levels, including those involving parentage, gene flow, divergence, phylogenetics, reticulate evolution, and many more. Here we provide a brief overview of targeted sequence enrichment, and emphasize the power of this technology to increase our ability to address a wide range of questions of interest to ecologists and evolutionary biologists, particularly for those working with taxa for which few genomic resources are available.  相似文献   

11.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.  相似文献   

12.
Although massively parallel sequencing has facilitated large-scale DNA sequencing, comparisons among distantly related species rely upon small portions of the genome that are easily aligned. Methods are needed to efficiently obtain comparable DNA fragments prior to massively parallel sequencing, particularly for biologists working with non-model organisms. We introduce a new class of molecular marker, anchored by ultraconserved genomic elements (UCEs), that universally enable target enrichment and sequencing of thousands of orthologous loci across species separated by hundreds of millions of years of evolution. Our analyses here focus on use of UCE markers in Amniota because UCEs and phylogenetic relationships are well-known in some amniotes. We perform an in silico experiment to demonstrate that sequence flanking 2030 UCEs contains information sufficient to enable unambiguous recovery of the established primate phylogeny. We extend this experiment by performing an in vitro enrichment of 2386 UCE-anchored loci from nine, non-model avian species. We then use alignments of 854 of these loci to unambiguously recover the established evolutionary relationships within and among three ancient bird lineages. Because many organismal lineages have UCEs, this type of genetic marker and the analytical framework we outline can be applied across the tree of life, potentially reshaping our understanding of phylogeny at many taxonomic levels.  相似文献   

13.
The emergence of massively parallel sequencing technology has revolutionized microbial profiling, allowing the unprecedented comparison of microbial diversity across time and space in a wide range of host-associated and environmental ecosystems. Although the high-throughput nature of such methods enables the detection of low-frequency bacteria, these advances come at the cost of sequencing read length, limiting the phylogenetic resolution possible by current methods. Here, we present a generic approach for integrating short reads from large genomic regions, thus enabling phylogenetic resolution far exceeding current methods. The approach is based on a mapping to a statistical model that is later solved as a constrained optimization problem. We demonstrate the utility of this method by analyzing human saliva and Drosophila samples, using Illumina single-end sequencing of a 750 bp amplicon of the 16S rRNA gene. Phylogenetic resolution is significantly extended while reducing the number of falsely detected bacteria, as compared with standard single-region Roche 454 Pyrosequencing. Our approach can be seamlessly applied to simultaneous sequencing of multiple genes providing a higher resolution view of the composition and activity of complex microbial communities.  相似文献   

14.
The identification of conserved loci across genomes, along with advances in target capture methods and high‐throughput sequencing, has helped spur a phylogenomics revolution by enabling researchers to gather large numbers of homologous loci across clades of interest with minimal upfront investment in locus design. Target capture for vertebrate animals is currently dominated by two approaches—anchored hybrid enrichment (AHE) and ultraconserved elements (UCE)—and both approaches have proven useful for addressing questions in phylogenomics, phylogeography and population genomics. However, these two sets of loci have minimal overlap with each other; moreover, they do not include many traditional loci that that have been used for phylogenetics. Here, we combine across UCE, AHE and traditional phylogenetic gene locus sets to generate the Squamate Conserved Loci set, a single integrated probe set that can generate high‐quality and highly complete data across all three loci types. We use these probes to generate data for 44 phylogenetically disparate taxa that collectively span approximately 33% of terrestrial vertebrate diversity. Our results generated an average of 4.29 Mb across 4709 loci per individual, of which an average of 2.99 Mb was sequenced to high enough coverage (≥10×) to use for population genetic analyses. We validate the utility of these loci for both phylogenomic and population genomic questions, provide a comparison among these locus sets of their relative usefulness and suggest areas for future improvement.  相似文献   

15.
The genomics revolution has initiated a new era of population genetics where genome‐wide data are frequently used to understand complex patterns of population structure and selection. However, the application of genomic tools to inform management and conservation has been somewhat rare outside a few well studied species. Fortunately, two recently developed approaches, amplicon sequencing and sequence capture, have the potential to significantly advance the field of conservation genomics. Here, amplicon sequencing refers to highly multiplexed PCR followed by high‐throughput sequencing (e.g., GTseq), and sequence capture refers to using capture probes to isolate loci from reduced‐representation libraries (e.g., Rapture). Both approaches allow sequencing of thousands of individuals at relatively low costs, do not require any specialized equipment for library preparation, and generate data that can be analyzed without sophisticated computational infrastructure. Here, we discuss the advantages and disadvantages of each method and provide a decision framework for geneticists who are looking to integrate these methods into their research programme. While it will always be important to consider the specifics of the biological question and system, we believe that amplicon sequencing is best suited for projects aiming to genotype <500 loci on many individuals (>1,500) or for species where continued monitoring is anticipated (e.g., long‐term pedigrees). Sequence capture, on the other hand, is best applied to projects including fewer individuals or where >500 loci are required. Both of these techniques should smooth the transition from traditional genetic techniques to genomics, helping to usher in the conservation genomics era.  相似文献   

16.
Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double‐digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single‐end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11 000 polymorphic loci per library of 6–30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost‐effective generation of variable and reproducible genetic markers.  相似文献   

17.
Population genetic studies of nonmodel organisms frequently employ reduced representation library (RRL) methodologies, many of which rely on protocols in which genomic DNA is digested by one or more restriction enzymes. However, because high molecular weight DNA is recommended for these protocols, samples with degraded DNA are generally unsuitable for RRL methods. Given that ancient and historic specimens can provide key temporal perspectives to evolutionary questions, we explored how custom‐designed RNA probes could enrich for RRL loci (Restriction Enzyme‐Associated Loci baits, or REALbaits). Starting with genotyping‐by‐sequencing (GBS) data generated on modern common ragweed (Ambrosia artemisiifolia L.) specimens, we designed 20 000 RNA probes to target well‐characterized genomic loci in herbarium voucher specimens dating from 1835 to 1913. Compared to shotgun sequencing, we observed enrichment of the targeted loci at 19‐ to 151‐fold. Using our GBS capture pipeline on a data set of 38 herbarium samples, we discovered 22 813 SNPs, providing sufficient genomic resolution to distinguish geographic populations. For these samples, we found that dilution of REALbaits to 10% of their original concentration still yielded sufficient data for downstream analyses and that a sequencing depth of ~7m reads was sufficient to characterize most loci without wasting sequencing capacity. In addition, we observed that targeted loci had highly variable rates of success, which we primarily attribute to similarity between loci, a trait that ultimately interferes with unambiguous read mapping. Our findings can help researchers design capture experiments for RRL loci, thereby providing an efficient means to integrate samples with degraded DNA into existing RRL data sets.  相似文献   

18.
19.
This is a time of unprecedented transition in DNA sequencing technologies. Next-generation sequencing (NGS) clearly holds promise for fast and cost-effective generation of multilocus sequence data for phylogeography and phylogenetics. However, the focus on non-model organisms, in addition to uncertainty about which sample preparation methods and analyses are appropriate for different research questions and evolutionary timescales, have contributed to a lag in the application of NGS to these fields. Here, we outline some of the major obstacles specific to the application of NGS to phylogeography and phylogenetics, including the focus on non-model organisms, the necessity of obtaining orthologous loci in a cost-effective manner, and the predominate use of gene trees in these fields. We describe the most promising methods of sample preparation that address these challenges. Methods that reduce the genome by restriction digest and manual size selection are most appropriate for studies at the intraspecific level, whereas methods that target specific genomic regions (i.e., target enrichment or sequence capture) have wider applicability from the population level to deep-level phylogenomics. Additionally, we give an overview of how to analyze NGS data to arrive at data sets applicable to the standard toolkit of phylogeography and phylogenetics, including initial data processing to alignment and genotype calling (both SNPs and loci involving many SNPs). Even though whole-genome sequencing is likely to become affordable rather soon, because phylogeography and phylogenetics rely on analysis of hundreds of individuals in many cases, methods that reduce the genome to a subset of loci should remain more cost-effective for some time to come.  相似文献   

20.
Next-generation sequencing technology has increased the capacity to generate molecular data for plant biological research, including phylogenetics, and can potentially contribute to resolving complex phylogenetic problems. The evolutionary history of Medicago L. (Leguminosae: Trifoliae) remains unresolved due to incongruence between published phylogenies. Identification of the processes causing this genealogical incongruence is essential for the inference of a correct species phylogeny of the genus and requires that more molecular data, preferably from low-copy nuclear genes, are obtained across different species. Here we report the development of 50 novel LCN markers in Medicago and assess the phylogenetic properties of each marker. We used the genomic resources available for Medicago truncatula Gaertn., hybridisation-based gene enrichment (sequence capture) techniques and Next-Generation Sequencing to generate sequences. This alternative proves to be a cost-effective approach to amplicon sequencing in phylogenetic studies at the genus or tribe level and allows for an increase in number and size of targeted loci. Substitution rate estimates for each of the 50 loci are provided, and an overview of the variation in substitution rates among a large number of low-copy nuclear genes in plants is presented for the first time. Aligned sequences of major species lineages of Medicago and its sister genus are made available and can be used in further probe development for sequence-capture of the same markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号