首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen ((1)O(2)), a non-radical reactive oxygen species that is restricted to the plastid compartment. Immediately after the shift, plants stop growing and develop necrotic lesions. We have established a protoplast system, which allows detection and characterization of the death response in flu induced by the release of (1)O(2). Vitamin B6 that quenches (1)O(2) in fungi was able to protect flu protoplasts from cell death. Blocking ethylene production was sufficient to partially inhibit the death reaction. Similarly, flu mutant seedlings expressing transgenic NahG were partially protected from the death provoked by the release of (1)O(2), indicating a requirement for salicylic acid (SA) in this process, whereas in cells depleted of both, ethylene and SA, the extent of cell death was reduced to the wild-type level. The flu mutant was also crossed with the jasmonic acid (JA)-depleted mutant opr3, and with the JA, OPDA and dinor OPDA (dnOPDA)-depleted dde2-2 mutant. Analysis of the resulting double mutants revealed that in contrast to the JA-induced suppression of H(2)O(2)/superoxide-dependent cell death reported earlier, JA promotes singlet oxygen-mediated cell death in flu, whereas other oxylipins such as OPDA and dnOPDA antagonize this death-inducing activity of JA.  相似文献   

2.
The conditional fluorescent (flu) mutant of Arabidopsis accumulates the photosensitizer protochlorophyllide in the dark. After a dark-to-light shift, the generation of singlet oxygen, a nonradical reactive oxygen species, starts within the first minute of illumination and was shown to be confined to plastids. Immediately after the shift, plants stopped growing and developed necrotic lesions. These early stress responses of the flu mutant do not seem to result merely from physicochemical damage. Peroxidation of chloroplast membrane lipids in these plants started rapidly and led to the transient and selective accumulation of a stereospecific and regiospecific isomer of hydroxyoctadecatrieonic acid, free (13S)-HOTE, that could be attributed almost exclusively to the enzymatic oxidation of linolenic acid. Within the first 15 min of reillumination, distinct sets of genes were activated that were different from those induced by superoxide/hydrogen peroxide. Collectively, these results demonstrate that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. Its biological activity in Arabidopsis exhibits a high degree of specificity that seems to be derived from the chemical identity of this reactive oxygen species and/or the intracellular location at which it is generated.  相似文献   

3.
4.
The conditional flu mutant of Arabidopsis accumulates excess amounts of protochlorophyllide within plastid membranes in the dark and generates singlet oxygen upon light exposure. By varying the length of the dark period, the level of the photosensitizer protochlorophyllide may be modulated, and conditions have been established that either endorse the cytotoxicity of (1)O(2) or reveal its signaling role. Two criteria have been used to distinguish between these two modes of activity of (1)O(2): the impact of the EXECUTER1 mutation and the prevalence of either non-enzymatic or enzymatic lipid peroxidation. During illumination of etiolated flu seedlings, toxic effects of (1)O(2) prevail and non-enzymatic lipid peroxidation proceeds rapidly. In contrast, in light-grown flu plants that were subjected to an 8 h dark/light shift, lipid peroxidation occurred almost exclusively enzymatically. The resulting oxidation product, 13-hydroperoxy octadecatrienoic acid (13-HPOT), serves as a substrate for synthesis of 12-oxo phytodienoic acid (OPDA) and jasmonic acid (JA), both of which are known to control various metabolic and developmental processes in plants. Inactivation of the EXECUTER1 protein abrogates not only (1)O(2)-mediated cell death and growth inhibition of flu plants, but also enzymatic lipid peroxidation. However, inactivation of jasmonate biosynthesis in the aos/flu double mutant does not affect (1)O(2)-mediated growth inhibition and cell death. Hence, JA and OPDA do not act as second messengers during (1)O(2) signaling, but form an integral part of a stress-related signaling cascade activated by (1)O(2) that encompasses several signaling pathways known to be activated by abiotic and biotic stressors.  相似文献   

5.
6.
In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1.  相似文献   

7.
8.
9.
10.
J Shah  P Kachroo    D F Klessig 《The Plant cell》1999,11(2):191-206
The Arabidopsis NPR1 gene was previously shown to be required for the salicylic acid (SA)- and benzothiadiazole (BTH)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. The dominant ssi1 (for suppressor of SA insensitivity) mutation characterized in this study defines a new component of the SA signal transduction pathway that bypasses the requirement of NPR1 for expression of the PR genes and disease resistance. The ssi1 mutation caused PR (PR-1, BGL2 [PR-2], and PR-5) genes to be constitutively expressed and restored resistance to an avirulent strain of Pseudomonas syringae pv tomato in npr1-5 (previously called sai1) mutant plants. In addition, ssi1 plants were small, spontaneously developed hypersensitive response-like lesions, accumulated elevated levels of SA, and constitutively expressed the antimicrobial defensin gene PDF1.2. The phenotypes of the ssi1 mutant are SA dependent. When SA accumulation was prevented in ssi1 npr1-5 plants by expressing the SA-degrading salicylate hydroxylase (nahG) gene, all of the phenotypes associated with the ssi1 mutation were suppressed. However, lesion formation and expression of the PR genes were restored in these plants by the application of BTH. Interestingly, expression of PDF1.2, which previously has been shown to be SA independent but jasmonic acid and ethylene dependent, was also suppressed in ssi1 npr1-5 plants by the nahG gene. Furthermore, exogenous application of BTH restored PDF1.2 expression in these plants. Our results suggest that SSI1 may function as a switch modulating cross-talk between the SA- and jasmonic acid/ethylene-mediated defense signal transduction pathways.  相似文献   

11.
12.
S A Bowling  A Guo  H Cao  A S Gordon  D F Klessig    X Dong 《The Plant cell》1994,6(12):1845-1857
Systemic acquired resistance (SAR) is a nonspecific defense response in plants that is associated with an increase in the endogenous level of salicylic acid (SA) and elevated expression of pathogenesis-related (PR) genes. To identify mutants involved in the regulation of PR genes and the onset of SAR, we transformed Arabidopsis with a reporter gene containing the promoter of a beta-1,3-glucanase-encoding PR gene (BGL2) and the coding region of beta-glucuronidase (GUS). The resulting transgenic line (BGL2-GUS) was mutagenized, and the M2 progeny were scored for constitutive GUS activity. We report the characterization of one mutant, cpr1 (constitutive expressor of PR genes), that was identified in this screen and shown by RNA gel blot analysis also to have elevated expression of the endogenous PR genes BGL2, PR-1, and PR-5. Genetic analyses indicated that the phenotype conferred by cpr1 is caused by a single, recessive nuclear mutation and is suppressed in plants producing a bacterial salicylate hydroxylase, which inactivates SA. Furthermore, biochemical analysis showed that the endogenous level of SA is elevated in the mutant. Finally, the cpr1 plants were found to be resistant to the fungal pathogen Peronospora parasitica NOCO2 and the bacterial pathogen Pseudomonas syringae pv maculicola ES4326, which are virulent in wild-type BGL2-GUS plants. Because the cpr1 mutation is recessive and associated with an elevated endogenous level of SA, we propose that the CPR1 gene product acts upstream of SA as a negative regulator of SAR.  相似文献   

13.
The Arabidopsis thaliana NPR1 gene is required for salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. However, loss-of-function mutations in NPR1 do not confer complete loss of PR gene expression or disease resistance. Thus these responses also can be activated via an NPR1-independent pathway that currently remain to be elucidated. The ssi2-1 mutant, identified in a genetic screen for suppressors of npr1-5, affects signaling through the NPR1-independent defense pathway(s). In comparison with the wild-type (SSI2 NPR1) plants and the npr1-5 mutant (SSI2 npr1-5), the ssi2-1 npr1-5 double mutant and the ssi2-1 NPR1 single mutant constitutively express PR genes [PR-1, BGL2 (PR-2) and PR-5]; accumulate elevated levels of SA; spontaneously develop lesions; and possess enhanced resistance to a virulent strain of Peronospora parasitica. The ssi2-1 mutation also confers enhanced resistance to Pseudomonas syringae pv. tomato (Pst); however, this is accomplished primarily via an NPR1-dependent pathway. Analysis of ssi2-1 NPR1 nahG and ssi2-1 npr1-5 nahG plants revealed that elevated SA levels were not essential for the ssi2-1-conferred phenotypes. However, expression of the nahG transgene did reduce the intensity of some ssi2-1-conferred phenotypes, including PR-1 expression, and disease resistance. Based on these results, SSI2 or an SSI2-generated signal appears to modulate signaling of an SA-dependent, NPR1-independent defense pathway, or an SA- and NPR1-independent defense pathway.  相似文献   

14.
Ng G  Seabolt S  Zhang C  Salimian S  Watkins TA  Lu H 《Genetics》2011,189(3):851-859
Properly coordinated defense signaling networks are critical for the fitness of plants. One hub of the defense networks is centered on salicylic acid (SA), which plays a key role in activating disease resistance in plants. However, while a number of genes are known to affect SA-mediated defense, relatively little is known about how these gene interact genetically with each other. Here we exploited the unique defense-sensitized Arabidopsis mutant accelerated cell death (acd) 6-1 to dissect functional relationships among key components in the SA hub. We show that while enhanced disease susceptibility (eds) 1-2 and phytoalexin deficient (pad) 4-1 suppressed acd6-1-conferred small size, cell death, and defense phenotypes, a combination of these two mutations did not incur additive suppression. This suggests that EDS1 and PAD4 act in the same signaling pathway. To further evaluate genetic interactions among SA regulators, we constructed 10 pairwise crosses in the acd6-1 background among mutants defective in: SA INDUCTION-DEFICIENT 2 for SA biosynthesis; AGD2-LIKE DEFENSE 1, EDS5, and PAD4 for SA accumulation; and NONEXPRESSOR OF PR GENES 1 for SA signaling. Systematic analysis of the triple mutants based on their suppression of acd6-1-conferred phenotypes revealed complex and interactive genetic relationships among the tested SA genes. Our results suggest a more comprehensive view of the gene networks governing SA function and provide a framework for further interrogation of the important roles of SA and possibly other signaling molecules in regulating plant disease resistance.  相似文献   

15.
16.
17.
Cao H  Bowling SA  Gordon AS  Dong X 《The Plant cell》1994,6(11):1583-1592
Systemic acquired resistance (SAR) is a general defense response in plants that is characterized by the expression of pathogenesis-related (PR) genes. SAR can be induced after a hypersensitive response to an avirulent pathogen or by treatment with either salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA). To dissect the signal transduction pathway of SAR, we isolated an Arabidopsis mutant that lacks the expression of an SA-, INA-, and pathogen-responsive chimeric reporter gene composed of the 5[prime] untranslated region of an Arabidopsis PR gene, [beta]-1,3-glucanase (BGL2), and the coding region of [beta]-glucuronidase (GUS). This mutant, npr1 (nonexpresser of PR genes), carries a single recessive mutation that abolishes the SAR-responsive expression of other PR genes as well. While SA-, INA-, or avirulent pathogen-induced SAR protects wild-type plants from Pseudomonas syringae infection, the mutant cannot be protected by pretreatment with these inducers. The insensitivity of npr1 to SA, INA, and avirulent pathogens in SAR induction indicates that these inducers share a common signal transduction pathway. Moreover, in npr1, the localized expression of PR genes induced by a virulent Pseudomonas pathogen is disrupted, and the lesion formed is less confined. These results suggest a role for PR genes in preventing the proximal spread of pathogens in addition to their suggested role in SAR.  相似文献   

18.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid-mediated pathway. N-cyanomethyl-2-chloroisonicotinamide (NCI) is able to induce a broad range of disease resistance in tobacco and rice and induces SAR marker gene expression without SA accumulation in tobacco. To clarify the detailed mode of action of NCI, we analyzed its ability to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with NCI exhibited increased expression of several pathogenesis-related genes and enhanced resistance to the bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. NCI induced disease resistance and PR gene expression in NahG transgenic plants, but not in the npr1 mutant. NCI could induce PR gene expression in the etr1-1, ein2-1 and jar1-1 mutants. Thus, NCI activates SAR, independently from ethylene and jasmonic acid, by stimulating the site between SA and NPR1.  相似文献   

19.
The Arabidopsis mutant cad1 (constitutively activated cell death 1) shows a phenotype that mimics hypersensitive response (HR)-like cell death. The CAD1 gene, which encodes a protein containing a domain with significant homology to the MACPF (membrane attach complex and perforin) domain of complement components and perforin, is likely to control plant immunity negatively and has a W-box cis-element in its promoter region. We found that expression of the CAD1 gene and other W-box containing genes, such as NPR1 and PR2, was promoted by salicylic acid (SA) and benzothiadiazole (BTH) as a SA agonist. The CAD1 gene was also stimulated by a purified chitin oligosaccharide elicitor (degree of polymerization = 8). This latter control was not under SA, because CAD1 expression was not suppressed in 35SnahG transgenic plants, which are unable to accumulate SA. These expression profiles were confirmed by promoter analysis using pCAD1::GUS transgenic plants. The CAD1 expression promoted by BTH and the chitin elicitor was not suppressed in the npr1 mutant, which is insensitive to SA signaling. These results indicate that the CAD1 gene is regulated by two distinct pathways involving SA and a chitin elicitor: viz., SA signaling mediated through an NPR1-independent pathway, and chitin elicitor signaling, through an SA-independent pathway. Three CAD1 homologs that have multiple W-box elements in their promoters were also found to be under the control of SA.  相似文献   

20.
We isolated a dominant gain-of-function Arabidopsis mutant, accelerated cell death 6 (acd6), with elevated defenses, patches of dead and enlarged cells, reduced stature, and increased resistance to Pseudomonas syringae. The acd6-conferred phenotypes are suppressed by removing a key signaling molecule, salicylic acid (SA), by using the nahG transgene, which encodes SA hydroxylase. This suppression includes phenotypes that are not induced by application of SA to wild-type plants, indicating that SA acts with a second signal to cause many acd6-conferred phenotypes. acd6-nahG plants show hyperactivation of all acd6-conferred phenotypes after treatment with a synthetic inducer of the SA pathway, benzo(1,2, 3)thiadiazole-7-carbothioic acid (BTH), suggesting that SA acts with and also modulates the levels and/or activity of the second defense signal. acd6 acts partially through a NONEXPRESSOR OF PR 1 (NPR1) gene-independent pathway that activates defenses and confers resistance to P. syringae. Surprisingly, BTH-treated acd6-nahG plants develop many tumor-like abnormal growths, indicating a possible role for SA in modulating cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号