首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

2.
In order to better understand the role of antioxidant enzymes in plant stress protection mechanisms, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants were developed that overexpress both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts. These plants were evaluated for protection against methyl viologen (MV, paraquat)‐mediated oxidative damage both in leaf discs and whole plants. Transgenic plants that express either chloroplast‐targeted CuZnSOD (C) or MnSOD (M) and APX (A) were developed (referred to as CA plants and AM plants, respectively). These plant lines were crossed to produce plants that express all three transgenes (CMA plants and AMC plants). These plants had higher total APX and SOD activities than non‐transgenic (NT) plants and exhibit novel APX and SOD isoenzymes not detected in NT plants. As expected, transgenic plants that expressed single SODs showed levels of protection from MV that were only slightly improved compared to NT plants. The expression of either SOD isoform along with APX led to increased protection while expression of both SODs and APX provided the highest levels of protection against membrane damage in leaf discs and visual symptoms in whole plants.  相似文献   

3.
4.
Oxidative stress is a major threat for plants exposed to various environmental stresses. Previous studies found that transgenic potato plants expressing both copper zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) (referred to as SSA plants), or nucleoside diphosphate kinase 2 (NDPK2) (SN plants), showed enhanced tolerance to methyl viologen (MV)‐induced oxidative stress and high temperature. This study aimed to develop transgenic plants that were more tolerant of oxidative stress by introducing the NDPK2 gene into SSA potato plants under the control of an oxidative stress‐inducible peroxidase (SWPA2) promoter to create SSAN plants. SSAN leaf discs and whole plants showed enhanced tolerance to MV, as compared to SSA, SN or non‐transgenic (NT) plants. SSAN plants sprayed with 400 µM MV exhibited about 53 and 83% less visible damage than did SSA and SN plants, respectively. The expression levels of the CuZnSOD, APX and NDPK2 genes in SSAN plants following MV treatment correlated well with MV tolerance. SOD, APX, NDPK and catalase antioxidant enzyme activities were also increased in MV‐treated SSAN plants. In addition, SSAN plants were more tolerant to high temperature stress at 42°C, exhibiting a 6.2% reduction in photosynthetic activity as compared to plants grown at 25°C. In contrast, the photosynthetic activities of SN and SSA plants decreased by 50 and 18%, respectively. These results indicate that the simultaneous overexpression of CuZnSOD, APX and NDPK2 is more effective than single or double transgene expression for developing plants with enhanced tolerance to various environmental stresses.  相似文献   

5.
Research in our laboratory has focused on the analysis of the functions of a variety of enzymes that are involved in the scavenging of reactive oxygen intermediates (ROI) such as superoxide radicals (·O 2 ) and hydrogen peroxide (H2O2). Recent work has been on transgenic plants that over-express glutathione S-transferases (GST) that also have glutathione peroxidase activity. Transgenic tobacco plants that contain gene constructs that encode two different tobacco GST’s had elevated levels of both GST and GPX activity. Analysis of mature vegetative transgenic tobacco plants that over-express GST/GPX failed to show any increase in paraquat tolerance or protection from photooxidative stress. However, seeds of these GST/GPX-expressing tobacco lines are capable of more rapid germination and seedling growth at low temperatures and at elevated salt concentrations. Reduced levels of lipid peroxidation were noted in GST/GPX-expressing seedling compared to control seedlings under both stressful and non-stressful conditions. In addition, GST/GPX-expressing seedlings significantly accumulated more oxidized glutathione (GSSG) than control seedlings during stress. These characteristics clearly indicate that over-expression of GST/GPX in transgenic seedlings can have substantial effects on their stress tolerance. Furthermore, it appears that this effect is due primarily to the elevated levels of GPX activity.  相似文献   

6.
Tang L  Kwon SY  Kim SH  Kim JS  Choi JS  Cho KY  Sung CK  Kwak SS  Lee HS 《Plant cell reports》2006,25(12):1380-1386
Oxidative stress is a major damaging factor for plants exposed to environmental stresses. In order to develop transgenic potato plants with enhanced tolerance to environmental stress, the genes of both Cu/Zn superoxide dismutase and ascorbate peroxidase were expressed in chloroplasts under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants). SSA plants showed enhanced tolerance to 250 μM methyl viologen, and visible damage in SSA plants was one-fourth that of non-transgenic (NT) plants that were almost destroyed. In addition, when SSA plants were treated with a high temperature of 42°C for 20 h, the photosynthetic activity of SSA plants decreased by only 6%, whereas that of NT plants decreased by 29%. These results suggest that the manipulation of the antioxidative mechanism of the chloroplasts may be applied in the development of industrial transgenic crop plants with increased tolerance to multiple environmental stresses.Communicated by I. S. Chung  相似文献   

7.
8.
To evaluate the physiological potential of the defense system against hydroperoxidation of membrane-lipid components caused by environmental stresses in higher plants, we generated transgenic tobacco plants expressing a glutathione peroxidase (GPX)-like protein in the cytosol (TcGPX) or chloroplasts (TpGPX). The activities toward alpha-linolenic acid hydroperoxide in TcGPX and TpGPX plants were 47.5-75.3 and 32.7-42.1 nM min(-1) mg(-1) protein, respectively, while no activity was detected in wild-type plants. The transgenic plants showed increased tolerance to oxidative stress caused by application of methylviologen (MV: 50 microM) under moderate light intensity (200 micro E m(-2) sec(-1)), chilling stress under high light intensity (4 degrees C, 1000 microE m(-2) sec(-1)), or salt stress (250 mM NaCl). Under these stresses, the lipid hydroperoxidation (the production of malondialdehyde (MDA)) of the leaves of TcGPX and TpGPX plants was clearly suppressed compared with that of wild-type plants. Furthermore, the capacity of the photosynthetic and antioxidative systems in the transgenic plants remained higher than those of wild-type plants under chilling or salt stress. These results clearly indicate that a high level of GPX-like protein in tobacco plants functions to remove unsaturated fatty acid hydroperoxides generated in cellular membranes under stress conditions, leading to the maintenance of membrane integrity and increased tolerance to oxidative stress caused by various stress conditions.  相似文献   

9.
Oxidative stress is one of the major causative factors for injury to plants exposed to environmental stresses. Plants have developed diverse defense mechanisms for scavenging oxidative stress-inducing molecules. The antioxidative enzyme 2-cysteine peroxiredoxin (2-Cys Prx) removes peroxides and protects the photosynthetic membrane from oxidative damage. In this study, transgenic potato (Solanum tuberosum L. cv. Atlantic) expressing At2-Cys Prx under control of the oxidative stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter (referred to as SP and EP plants, respectively) was generated using Agrobacterium-mediated transformation. The transgenic plants were tested for tolerance to stress. Following treatment with 3 μM methyl viologen (MV), leaf discs from SP and EP plants showed approximately 33 and 15% less damage than non-transformed (NT) plants. When 300 μM MV was sprayed onto whole plants, the photosynthetic activity of SP plants decreased by 25%, whereas that of NT plants decreased by 60%. In addition, SP plants showed enhanced tolerance to high temperature at 42 °C. After treatment at high temperature, the photosynthetic activity of SP plants decreased by about 7% compared to plants grown at 25 °C, whereas it declined by 31% in NT plants. These results indicate that transgenic potato can efficiently regulate oxidative stress from various environmental stresses via overexpression of At2-Cys Prx under control of the stress-inducible SWPA2 promoter.  相似文献   

10.
This work presents findings, which indicate important role of fructose, fructose 6-phosphate (F6P), and fructose 1,6-bisphosphate (FBP) in preservation of homeostasis in plants under low temperature. Cold combined with light is known to incite increased generation of superoxide in chloroplasts leading to photoinhibition, but also an increased level of soluble sugars. In the present study, oxidative stress in pea leaves provoked by cold/light regime was asserted by the observed decrease of the level of oxidized form of PSI pigment P700 (P700(+)). Alongside, the increased antioxidative status and the accumulation of fructose were observed. The antioxidative properties of fructose and its phosphorylated forms were evaluated to appraise their potential protective role in plants exposed to chilling stress. Fructose, and particularly F6P and FBP exhibited high capacities for scavenging superoxide and showed to be involved in antioxidative protection in pea leaves. These results combined with previously established links implicate that the increase in level of fructose sugars through various pathways intercalated into physiological mechanisms of homeostasis represents important non-enzymatic antioxidative defense in plants under cold-related stress.  相似文献   

11.
Oxidative stress in fish (Sparus aurata) as a consequence of food restriction and fasting, has been studied. Four groups of fish were maintained for 46 days under different conditions of food supplementation: a control group with no food restriction (ratio of food/fish of 2% w/w), two groups of animals with restricted food supplement (1 and 0.5%) and a fasting group (no meal addition). Finally, all the fish were provided with food at the same ratio as the control group for the last 7 days. Sampling and weighing of fish were carried out every week and their livers were used for the analysis of known biomarkers of oxidative stress. Malondialdehyde and oxidized glutathione levels increased at the third week in fish with partial or total food deprivation, but these levels returned to normal values when the fish readapted to the control conditions. Antioxidant enzymes were also analyzed and significant increases in superoxide dismutase (SOD), glutathione reductase and glutathione peroxidase activities were found in parallel with food restriction; however catalase activity decreased in fasting fish. New SOD isoforms were detected by isoelectrofocusing in fish under food restriction at the second week, which disappeared when starved fish returned to the control conditions. These new SOD isoforms were detected before the appearance of other usual oxidative stress biomarkers.  相似文献   

12.
Cladophora glomerata (L.) Kütz. and Enteromorpha ahlneriana Bliding are morphologically similar filamentous green algae that are dominants in the upper littoral zone of the brackish Baltic Sea. As these two species co-exist in a continuously fluctuating environment, we hypothesised that they may have different strategies to cope with oxidative stress. This was tested in laboratory experiments through stressing the algae by high irradiance (600 μmol photons PAR m−2 s−1) at two different temperatures (15 and 26 °C) in a closed system. Thus, oxidative stress was created by high irradiance (photo-oxidative stress) and/or carbon depletion. The extent of lipid oxidative damage, antioxidant enzyme activities and the amount of hydrogen peroxide excreted by the algae to the surrounding seawater medium were measured. The results suggest that the two species have different strategies: the annual C. glomerata could be classified as a more stress-tolerant species and the ephemeral E. ahlneriana as a more stress-susceptible species. Low temperature in combination with high irradiance created less lipid oxidative damage in C. glomerata than in E. ahlneriana, which was probably related to the higher regular activities of the hydrogen peroxide scavenging enzymes catalase and ascorbate peroxidase in C. glomerata, whereas in E. ahlneriana high activities of these enzymes were only obtained after the induction of oxidative stress. Superoxide dismutase activities were similar in both species, but the mechanisms to remove the hydrogen peroxide produced by the action of this enzyme were different: more through scavenging enzymes in C. glomerata and more through excretion to the seawater medium in E. ahlneriana. The high excretion of hydrogen peroxide, possibly in combination with brominated volatile halocarbons, by E. ahlneriana may have a negative effect on epiphytes and may partly explain why this alga is usually remarkably devoid of epiphytes and grazers compared to C. glomerata.  相似文献   

13.
通过构建融合番茄RuBP羧化酶小亚基转运肽基因(rbcS-3)和CAT基因编码阅读框(ORF)的双元表达载体,采用农杆菌介导的叶圆盘转化法将融合基因转入烟草,使其能够定向导入叶绿体中发挥作用。在含有50mg/L潮霉素的培养基上筛选获得转CAT烟草30多个株系,并对其进行了分子生物学的验证和生理指标的检测。对获得的抗性植株用PCR、RT-PCR、植株总蛋白Western blot和叶绿体蛋白Western blot分析表明,目的基因已经整合到烟草基因组中,并能正常表达,且在叶绿体rbcS-3转运肽的作用下能定向进入叶绿体中。对转基因植株生理指标的检测发现,在20% PEG6000模拟干旱条件下,野生型烟草的相对电导率提高幅度为43.4%,而转CAT植株的相对电导率仅提高8.8%,表明在干旱胁迫下转CAT烟草的质膜透性小于野生型烟草;经20% PEG6000处理后,野生型和转CAT基因烟草的叶绿素含量都下降,下降幅度分别为68.0%和20.4%;另外,经20% PEG6000处理的野生型烟草叶片的Fv/Fm下降幅度为5.3%,而转CAT基因烟草叶片的Fv/Fm下降幅度0.9%,这些结果表明,在叶绿体中过量表达CAT对干旱胁迫下的细胞质膜、叶绿素和PSⅡ具有一定的保护作用。此外,经150 μmol/L百草枯处理后发现,处理3h后,野生型烟草和转CAT烟草的相对电导率分别比对照提高67.9%和13.5%,而野生型和转CAT烟草的Fv/Fm都下降,降幅分别为23.7%和3.9%,这表明在百草枯氧化胁迫下转CAT烟草的质膜和PSⅡ的损伤程度都小于野生型烟草。总之,豌豆CAT基因在烟草叶绿体中过量表达,提高了转基因烟草的抗旱性和抗氧化性。  相似文献   

14.
Andrea Polle 《Planta》1996,198(2):253-262
It is generally believed that a restricted export of carbohydrates from source leaves causes oxidative stress because of an enhanced utilisation of O2 instead of NADP+ as electron acceptor in photosynthesis. To test this hypothesis, developmental changes of antioxidative systems were investigated in wild-type and transgenic tobacco (Nicotiana tabacum L.) suffering from disturbed sink-source relations by expression of yeast invertase in the apoplastic space. Young expanding leaves of the wild type contained higher activities of Superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), glutathione reductase (EC 1.6.4.2) and a higher glutathione content than mature source leaves. The activity of monodehydroascorbate-radical reductase (EC 1.1.5.4) and the ascorbate content remained unaffected by the developmental stage in the wild type. In young expanding leaves of the transgenic plants the capacity of the antioxidative systems was similar to or higher than in corresponding leaves from the wild type. Source leaves of transgenic tobacco with an increased carbohydrate content showed a small chlorophyll loss, an increased malondialdehyde content, a selective loss of the activities of Cu/Zn-superoxide dismutase isoenzymes and a fourfold decrease in ascorbate compared with the wild type. There was no evidence that the protection from H2O2 was insufficient since source leaves of transgenic tobacco contained increased activities of catalase, ascorbate peroxidase, and monodehydroascorbate-radical reductase and an increased ascorbate-to-dehydroascorbate ratio compared with source leaves of the wild type. In severely chlorotic leaf sections of the transgenic plants, most components of the antioxidative system were lower than in green leaf sections, but the ascorbate-to-dehydroascorbate ratio was increased. These results suggest that carbohydrate-accumulating cells have an increased availability of reductant, which can increase the degree of reduction of the ascorbate system via glutathione-related systems or via the activity of monodehydroascorbate-radical reductase. At the same time, transgenic tobacco leaves seem to suffer from an increased oxidative stress, presumably as a result of a decreased consumption of O 2 .- by Cu/Zn-superoxide dismutases in the chloroplasts. There was no evidence that carbohydrate-accumulating leaves acclimated to enhanced O 2 .- production rates in the chloroplasts.  相似文献   

15.
16.
To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.  相似文献   

17.
Arabidopsis thaliana was transformed with the codA gene from Arthrobacter globiformis. This gene encodes choline oxidase, an enzyme that converts choline to glycinebetaine. The photosynthetic activity, monitored in terms of chlorophyll fluorescence, of transformed plants was more tolerant to light stress than that of wild-type plants. This enhanced tolerance to light stress was caused by acceleration of the recovery of the photosystem II (PS II) complex from the photo-inactivated state. The transformed plants synthesized glycinebetaine, but no changes were detected in the relative levels of membrane lipids or in the relative levels of fatty acids in the various membrane lipids. Transformation with the codA gene increased levels of H2O2, a by-product of the reaction catalyzed by choline oxidase, by only 50% to 100% under stress or non-stress conditions. The activity of ascorbate peroxidase and, to a lesser extent, that of catalase in transformed plants were significantly higher than in the wild-type plants. These observations suggest that H2O2 produced by choline oxidase in the transformed plants might have stimulated the expression of H2O2 scavenging enzymes, with resultant maintenance of the level of H2O2 within a certain limited range. It appears that glycinebetaine produced in vivo, but not changes in membrane lipids or in the level of H2O2, protected the PS II complex in transformed plants from damage due to light stress.  相似文献   

18.
To explore the possibility of overcoming the highly phytotoxic effect of SO(2) and salt stress, we introduced the maize Cu/ZnSOD and/or CAT genes into chloroplasts of Chinese cabbage (Brassica campestris L. ssp. pekinensis cv. Tropical Pride) (referred to as SOD, CAT and SOD+CAT plants). SOD+CAT plants showed enhanced tolerance to 400 ppb SO(2), and visible damage was one-sixth that of wild-type (CK) plants. In addition, when SOD+CAT plants were exposed to a high salt treatment of 200 mM NaCl for 4 weeks, the photosynthetic activity of the plants decreased by only 6%, whereas that of CK plants decreased by 72%. SOD plants had higher total APX and GR activities than CK plants. As expected, SOD plants showed levels of protection from SO(2) and salt stress that were moderately improved compared to CK plants. However, CAT plants showed inhibition of APX activity and provided only limited improvements in plant stress tolerance. Moreover, SOD+CAT plants accumulated more K(+), Ca(2+) and Mg(2+) and less Na(+) in their leaves compared with those of CK plants. These results suggest that the expression of SOD and CAT simultaneously is suitable for the introduction of increased multiple stress protection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号