首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new algorithm was proposed for calculation of N-H bond order parameter from molecular dynamics (MD) trajectories. The MD simulation of the HIV-1 protease (3.4.23.16) with monoprotonated active centre was performed for the algorithm verification. It has been shown that the protease in aqueous solution at pH 3.5-6.5 adopts a set of conformations, which are intermediate between the "open" and "closed" ones. The N-H bond order parameters calculated from the MD trajectory are in agreement with experimental NMR data.  相似文献   

2.
The generalized order parameter, S2, calculated from MD simulation trajectory using time-dependent internal Correlation Motion Function (CMF) agrees well with NMR derived S2 processed with the extended model-free analysis approach. However, the former lies considerably lower comparing to simple model-free derived data from NMR experiments. In the present study we analyze possible reasons of such disagreement. In the general case we propose to use preexponential factors from expression for internal CMF rather than ordinary S2 values. Particularly, in case of the simple model-free S(2) experimental values we suggest comparing them with S2(eff)=1+S2-Sf2 computed from MD simulation data. We show that the S2(eff) values are in a good agreement with NMR derived S2 values obtained using the simple model-free analysis.  相似文献   

3.
It has been suggested that the cause of disagreements between molecular dynamics (MD) and NMR N–H bond order parameters is the fact that the NMR order parameter is determined for different amino acid residues at different time intervals, while the MD one is derived for all residues from the same MD trajectory of the same time interval. Therefore, it has been proposed for correct comparison with NMR data to calculate the MD order parameter for different amino acid residues separately for trajectory ranges close to NMR correlation time. The MD simulation of the human immunodeficiency virus type-1 protease (HIV-1 PR) with monoprotonated active centre was performed for verification of the proposition. It has been shown that the protease in aqueous solution adopts a set of conformations, which are intermediate between semiopen and closed ones. The calculated MD N–H bond order parameters are in agreement with literature NMR data in confidence interval limits.  相似文献   

4.
5.
Model-free parameters obtained from nuclear magnetic resonance (NMR) relaxation experiments and molecular dynamics (MD) simulations commonly are used to describe the intramolecular dynamical properties of proteins. To assess the relative accuracy and precision of experimental and simulated model-free parameters, three independent data sets derived from backbone 15N NMR relaxation experiments and two independent data sets derived from MD simulations of Escherichia coli ribonuclease HI are compared. The widths of the distributions of the differences between the order parameters for pairs of NMR data sets are congruent with the uncertainties derived from statistical analyses of individual data sets; thus, current protocols for analyzing NMR data encapsulate random uncertainties appropriately. Large differences in order parameters for certain residues are attributed to systematic differences between samples for intralaboratory comparisons and unknown, possibly magnetic field-dependent, experimental effects for interlaboratory comparisons. The widths of distributions of the differences between the order parameters for two NMR sets are similar to widths of distributions for an NMR and an MD set or for two MD sets. The linear correlations between the order parameters for an MD set and an NMR set are within the range of correlations observed between pairs of NMR sets. These comparisons suggest that the NMR and MD generalized order parameters for the backbone amide N—H bond vectors are of comparable accuracy for residues exhibiting motions on a fast time scale (<100 ps). Large discrepancies between NMR and MD order parameters for certain residues are attributed to the occurrence of “rare” motional events over the simulation trajectories, the disruption of an element of secondary structure in one of the simulations, and lack of consensus among the experimental data sets. Consequently, (easily detectable) severe distortions of local protein structure and infrequent motional events in MD simulations appear to be the most serious artifacts affecting the accuracy and precision, respectively, of MD order parameters relative to NMR values. In addition, MD order parameters for motions on a fast (<100 ps) timescale are more precisely determined than their NMR counterparts, thereby permitting more detailed dynamic characterization of biologically important residues by MD simulation than is sometimes possible by experimental methods. Proteins 28:481–493, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Orientational constraints obtained from solid state NMR experiments on anisotropic samples are used here in molecular dynamics (MD) simulations for determining the structure and dynamics of several different membrane-bound molecules. The new MD technique is based on the inclusion of orientation dependent pseudo-forces in the COSMOS-NMR force field. These forces drive molecular rotations and re-orientations in the simulation, such that the motional time-averages of the tensorial NMR properties approach the experimentally measured parameters. The orientational-constraint-driven MD simulations are universally applicable to all NMR interaction tensors, such as chemical shifts, dipolar couplings and quadrupolar interactions. The strategy does not depend on the initial choice of coordinates, and is in principle suitable for any flexible molecule. To test the method on three systems of increasing complexity, we used as constraints some deuterium quadrupolar couplings from the literature on pyrene, cholesterol and an antimicrobial peptide embedded in oriented lipid bilayers. The MD simulations were able to reproduce the NMR parameters within experimental error. The alignment of the three membrane-bound molecules and some aspects of their conformation were thus derived from the NMR data, in good agreement with previous analyses. Furthermore, the new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of all three systems.  相似文献   

7.
In a combined NMR/MD study, the temperature-dependent changes in the conformation of two members of the RNA YNMG-tetraloop motif (cUUCGg and uCACGg) have been investigated at temperatures of 298, 317 and 325 K. The two members have considerable different thermal stability and biological functions. In order to address these differences, the combined NMR/MD study was performed. The large temperature range represents a challenge for both, NMR relaxation analysis (consistent choice of effective bond length and CSA parameter) and all-atom MD simulation with explicit solvent (necessity to rescale the temperature). A convincing agreement of experiment and theory is found. Employing a principle component analysis of the MD trajectories, the conformational distribution of both hairpins at various temperatures is investigated. The ground state conformation and dynamics of the two tetraloops are indeed found to be very similar. Furthermore, both systems are initially destabilized by a loss of the stacking interactions between the first and the third nucleobase in the loop region. While the global fold is still preserved, this initiation of unfolding is already observed at 317 K for the uCACGg hairpin but at a significantly higher temperature for the cUUCGg hairpin.  相似文献   

8.
The alignment of pyrene in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer was investigated using two different approaches, namely solid-state (2)H-NMR spectroscopy and molecular dynamics (MD) simulations. Quadrupolar splittings from (2)H-NMR spectra of deuterated pyrene-d(10) in an oriented lipid bilayer give information about the orientation of C-D bonds with respect to the membrane normal. From MD simulations, geometric information is accessible via trajectories. By defining molecular and bond order parameters, the data from MD trajectories and NMR spectra can be compared straightforwardly. To ensure that the results from both methods are comparable, parameters of the experimental and the simulation setup were chosen to be as similar as possible. From simulations, we saw that pyrene prefers a position inside the lipid membrane near the headgroups and has no tendency to diffuse from one monolayer of the membrane to the other. The results from simulation and NMR show that the normal of the molecular plane is aligned nearly perpendicular to the bilayer normal. The long axis of pyrene lies preferentially parallel to the bilayer normal within a range of +/-30 degrees . The results from the two different methods are remarkably consistent. The good agreement can be explained by the fact that the different kind of motions of a pyrene molecule are already averaged within a few nanoseconds, which is the timescale covered by the MD simulation.  相似文献   

9.
The solution conformation of the cyclic peptide J324 (cyclo0,6-[Lys0,Glu6,D-Phe7]BK), an antagonist targeted at the bradykinin (BK) B2 receptor, has been investigated using experimental and theoretical methods. In order to gain insight into the structural requirements essential for BK antagonism, we carried out molecular dynamics (MD) simulations using simulated annealing as the sampling protocol. Following a free MD simulation we performed simulations using nuclear Overhauser enhancement (NOE) distance constraints determined by NMR experiments. The low-energy structures obtained were compared with each other, grouped into families and analyzed with respect to the presence of secondary structural elements in their backbone. We also introduced new ways of plotting structural data for a more comprehensive analysis of large conformational sets. Finally, the relationship between characteristic backbone conformations and the spatial arrangement of specific pharmacophore centers was investigated.  相似文献   

10.
11.
Molecular dynamics (MD) simulations have become a central tool for investigating various biophysical questions with atomistic detail. While many different proxies are used to qualify MD force fields, most are based on largely structural parameters such as the root mean square deviation from experimental coordinates or nuclear magnetic resonance (NMR) chemical shifts and residual dipolar couplings. NMR derived Lipari–Szabo squared generalized order parameter (O2) values of amide N? H bond vectors of the polypeptide chain were also often employed for refinement and validation. However, with a few exceptions, side chain methyl symmetry axis order parameters have not been incorporated into experimental reference sets. Using a test set of five diverse proteins, the performance of several force fields implemented in the NAMDD simulation package was examined. It was found that simulations employing explicit water implemented using the TIP3 model generally performed significantly better than those using implicit water in reproducing experimental methyl symmetry axis O2 values. Overall the CHARMM27 force field performs nominally better than two implementations of the Amber force field. It appeared that recent quantum mechanics modifications to side chain torsional angles of leucine and isoleucine in the Amber force field have significantly hindered proper motional modeling for these residues. There remained significant room for improvement as even the best correlations of experimental and simulated methyl group Lipari–Szabo generalized order parameters fall below an R2 of 0.8.  相似文献   

12.
Summary Spectral densities of the 15N amide in Escherichia coli ribonuclease HI, obtained from NMR relaxation experiments, were compared with those calculated using a molecular dynamics (MD) simulation. All calculations and comparisons assumed that the auto-correlation function describing the internal motions of the molecule was independent of the auto-correlation function associated with overall rotational diffusion. Comparisons were limited to those residues for which the auto-correlation function of internal motions rapidly relaxed and reached a steady state within 205 ps. The results show the importance of frequency components as well as amplitudes of internal motions in order to obtain a meaningful comparison of MD simulations with NMR data.  相似文献   

13.
Biomolecular force fields for use in molecular dynamics (MD) simulations of proteins, DNA, or membranes are generally parametrized against ab initio quantum-chemical and experimental data for small molecules. The application of a force field in a simulation of a biomolecular system, such as a protein in solution, may then serve as a test of the quality and transferability of the force field. Here, we compare various properties obtained from two MD simulations of the protein hen egg white lysozyme (HEWL) in aqueous solution using the latest version, GROMOS96, of the GROMOS force field and an earlier version, GROMOS87+, with data derived from nuclear magnetic resonance (NMR) experiments: NOE atom-atom distance bounds, (3)J(HNalpha)-coupling constants, and backbone and side-chain order parameters. The convergence of these quantities over a 2-ns period is considered, and converged values are compared to experimental ones. The GROMOS96 simulation shows better agreement with the NMR data and also with the X-ray crystal structure of HEWL than the GROMOS87+ simulation, which was based on an earlier version of the GROMOS force field.  相似文献   

14.
The technique of two-dimensional nuclear magnetic resonance (2D-NMR) has recently assumed an active role in obtaining information on structures of polypeptides, small proteins, sugars, and DNA fragments in solution. In order to generate spatial structures from the atom-atom distance information obtained by the NMR method, different procedures have been developed. Here we introduce a combined procedure of distance geometry (DG) and molecular dynamics (MD) calculations for generating 3D structures that are consistent with the NMR data set and have reasonable internal energies. We report the application of the combined procedure on the lac repressor DNA binding domain (headpiece) using a set of 169 NOE and 17 "hydrogen bond" distance constraints. Eight of ten structures generated by the distance geometry algorithm were refined within 10 ps MD simulation time to structures with low internal energies that satisfied the distance constraints. Although the combination of DG and MD was designed to combine the good sampling properties of the DG algorithm with an efficient method of lowering the internal energy of the molecule, we found that the MD algorithm contributes significantly to the sampling as well.  相似文献   

15.
Abstract

We present here results on 260 pico seconds (ps) molecular dynamics (MD) simulation of substance P (SP) in hydrated bilayer of dimyristoyl phosphatidyl choline (DMPC) (39 molecules of DMPC with 776 water molecules). 260 ps MD simulation has been carried out in 0.001 ps time interval with united atom force field, using AMBER 4.0 package. Non bonded pair list was updated every 20 cycles using 12.5 Å cut off distance. Analysis of MD data is done using our package ANALMD. The obtained models are presented using graphics package RASMOL. All simulations, analysis of MD data and graphics is done on INDIGO-2, R-4400 extreme graphics work station. Our results show no systematic change in order parameter, but reduction in transfraction of the chain torsional angles, compared to our earlier results on MD simulation on hydrated DMPC bilayer without SP. C-terminal and central peptide residues adopt partial helical conformation. Helix type as classified on the basis of H-bonds is between a and 310. The peptide backbone shows flexibility during heating runs. Later, it is stabilized and there was not much change in the spatial position of the backbone. Lipid matrix serves the role of immobilization of the peptide backbone in a preferred conformation.  相似文献   

16.
The sophistication of the force fields, algorithms and hardware used for molecular dynamics (MD) simulations of proteins is continuously increasing. No matter how advanced the methodology, however, it is essential to evaluate the appropriateness of the structures sampled in a simulation by comparison with quantitative experimental data. Solution nuclear magnetic resonance (NMR) data are particularly useful for checking the quality of protein simulations, as they provide both structural and dynamic information on a variety of temporal and spatial scales. Here, various features and implications of using NMR data to validate and bias MD simulations are outlined, including an overview of the different types of NMR data that report directly on structural properties and of relevant simulation techniques. The focus throughout is on how to properly account for conformational averaging, particularly within the context of the assumptions inherent in the relationships that link NMR data to structural properties.  相似文献   

17.
18.
This paper explores the dependence of the molecular dynamics (MD) trajectory of a protein molecule on the titration state assigned to the molecule. Four 100-ps MD trajectories of bovine pancreatic trypsin inhibitor (BPTI) were generated, starting from two different structures, each of which was held in two different charge states. The two starting structures were the X-ray crystal structure and one of the solution structures determined by NMR, and the charge states differed only in the ionization state of N terminus. Although it is evident that the MD simulations were too short to sample fully the equilibrium distribution of structures in each case, standard Poisson-Boltzmann titration state analysis of the resulting configurations shows general agreement between the overall titration behavior of the protein and the charge state assumed during MD simulation: at pH 7, the total net charge of the protein resulting from the titration analysis is consistently lower for the protein with the N terminus assumed to be neutral than for the protein with the N terminus assumed to be charged. For most of the ionizable residues, the differences in the calculated pKaS among the four trajectories are statistically negligible and remain in good agreement with the data obtained by crystal structure titration and by experiment. The exceptions include the N terminus, which responds directly to the change of its imposed charge; the C terminus, which in the NMR structure interacts strongly with the former; and a few other residues (Arg 1, Glu 7, Tyr 35, and Arg 42) whose pKaS reflect the initial structure and the limited trajectory lengths. This study illustrates the importance of the careful assignment of protonation states at the start of MD simulations and points to the need for simulation methods that allow for the variation of the protonation state in the calculation of equilibrium properties.  相似文献   

19.
A continuum electrostatics approach for molecular dynamics (MD) simulations of macromolecules is presented and analyzed for its performance on a peptide and a globular protein. The approach incorporates the screened Coulomb potential (SCP) continuum model of electrostatics, which was reported earlier. The model was validated in a broad set of tests some of which were based on Monte Carlo simulations that included single amino acids, peptides, and proteins. The implementation for large-scale MD simulations presented in this article is based on a pairwise potential that makes the electrostatic model suitable for fast analytical calculation of forces. To assess the suitability of the approach, a preliminary validation is conducted, which consists of (i) a 3-ns MD simulation of the immunoglobulin-binding domain of streptococcal protein G, a 56-residue globular protein and (ii) a 3-ns simulation of Dynorphin, a biological peptide of 17 amino acids. In both cases, the results are compared with those obtained from MD simulations using explicit water (EW) molecules in an all-atom representation. The initial structure of Dynorphin was assumed to be an alpha-helix between residues 1 and 9 as suggested from NMR measurements in micelles. The results obtained in the MD simulations show that the helical structure collapses early in the simulation, a behavior observed in the EW simulation and consistent with spectroscopic data that suggest that the peptide may adopt mainly an extended conformation in water. The dynamics of protein G calculated with the SCP implicit solvent model (SCP-ISM) reveals a stable structure that conserves all the elements of secondary structure throughout the entire simulation time. The average structures calculated from the trajectories with the implicit and explicit solvent models had a cRMSD of 1.1 A, whereas each average structure had a cRMSD of about 0.8A with respect to the X-ray structure. The main conformational differences of the average structures with respect to the crystal structure occur in the loop involving residues 8-14. Despite the overall similarity of the simulated dynamics with EW and SCP models, fluctuations of side-chains are larger when the implicit solvent is used, especially in solvent exposed side-chains. The MD simulation of Dynorphin was extended to 40 ns to study its behavior in an aqueous environment. This long simulation showed that the peptide has a tendency to form an alpha-helical structure in water, but the stabilization free energy is too weak, resulting in frequent interconversions between random and helical conformations during the simulation time. The results reported here suggest that the SCP implicit solvent model is adequate to describe electrostatic effects in MD simulation of both peptides and proteins using the same set of parameters. It is suggested that the present approach could form the basis for the development of a reliable and general continuum approach for use in molecular biology, and directions are outlined for attaining this long-term goal.  相似文献   

20.
The multiconformer nature of solution nuclear magnetic resonance (NMR) structures of proteins results from the effects of intramolecular dynamics, spin diffusion and an uneven distribution of structural restraints throughout the molecule. A delineation of the former from the latter two contributions is attempted in this work for an ensemble of 15 NMR structures of the protein Escherichia coli ribonuclease HI (RNase HI). Exploration of the dynamic information content of the NMR ensemble is carried out through correlation with data from two crystal structures and a 1.7‐ns molecular dynamics (MD) trajectory of RNase HI in explicit solvent. Assessment of the consistency of the crystal and mean MD structures with nuclear Overhauser effect (NOE) data showed that the NMR ensemble is overall more compatible with the high‐resolution (1.48 Å) crystal structure than with either the lower‐resolution (2.05 Å) crystal structure or the MD simulation. Furthermore, the NMR ensemble is found to span more conformational space than the MD simulation for both the backbone and the sidechains of RNase HI. Nonetheless, the backbone conformational variability of both the NMR ensemble and the simulation is especially consistent with NMR relaxation measurements of two loop regions that are putative sites of substrate recognition. Plausible side‐chain dynamic information is extracted from the NMR ensemble on the basis of (i) rotamericity and syn‐pentane character of variable torsion angles, (ii) comparison of the magnitude of atomic mean‐square fluctuations (msf) with those deduced from crystallographic thermal factors, and (iii) comparison of torsion angle conformational behavior in the NMR ensemble and the simulation. Several heterogeneous torsion angles, while adopting non‐rotameric/syn‐pentane conformations in the NMR ensemble, exist in a unique conformation in the simulation and display low X‐ray thermal factors. These torsions are identified as sites whose variability is likely to be an artifact of the NMR structure determination procedure. A number of other torsions show a close correspondence between the conformations sampled in the NMR and MD ensembles, as well as significant correlations among crystallographic thermal factors and atomic msf calculated from the NMR ensemble and the simulation. These results indicate that a significant amount of dynamic information is contained in the NMR ensemble. The relevance of the present findings for the biological function of RNase HI, protein recognition studies, and previous investigations of the motional content of protein NMR structures are discussed. Proteins 1999;36:87–110. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号