首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The influence of the amino acid residues surrounding the flavin ring in the flavodoxin of the cyanobacterium Anabaena PCC 7119 on the electron spin density distribution of the flavin semiquinone was examined in mutants of the key residues Trp(57) and Tyr(94) at the FMN binding site. Neutral semiquinone radicals of the proteins were obtained by photoreduction and examined by electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies. Significant differences in electron density distribution were observed in the flavodoxin mutants Trp(57) --> Ala and Tyr(94) --> Ala. The results indicate that the presence of a bulky residue (either aromatic or aliphatic) at position 57, as compared with an alanine, decreases the electron spin density in the nuclei of the benzene flavin ring, whereas an aromatic residue at position 94 increases the electron spin density at positions N(5) and C(6) of the flavin ring. The influence of the FMN ribityl and phosphate on the flavin semiquinone was determined by reconstituting apoflavodoxin samples with riboflavin and with lumiflavin. The coupling parameters of the different nuclei of the isoalloxazine group, as detected by ENDOR and HYSCORE, were very similar to those of the native flavodoxin. This indicates that the protein conformation around the flavin ring and the electron density distribution in the semiquinone form are not influenced by the phosphate and the ribityl of FMN.  相似文献   

2.
The structure of a putative protease from Bacteroides thetaiotaomicron features an unprecedented binding site for flavin mononucleotide. The flavin isoalloxazine ring is sandwiched between two tryptophan residues in the interface of the dimeric protein. We characterized the recombinant protein with regard to its affinity for naturally occurring flavin derivatives and several chemically modified flavin analogs. Dissociation constants were determined by isothermal titration calorimetry. The protein has high affinity to naturally occurring flavin derivatives, such as riboflavin, FMN, and FAD, as well as lumichrome, a photodegradation product of flavins. Similarly, chemically modified flavin analogs showed high affinity to the protein in the nanomolar range. Replacement of the tryptophan by phenylalanine gave rise to much weaker binding, whereas in the tryptophan to alanine variant, flavin binding was abolished. We propose that the protein is an unspecific scavenger of flavin compounds and may serve as a storage protein in vivo.  相似文献   

3.
The interaction of purified riboflavin kinase (EC 2.7.1.26) from Pichia guilliermondii with 44 structural vitamin B2 analogues is studied. The presence of D-ribityl lateral chain in an analogue structure is found to be necessary for the substrate activity. The substitution of CH3 groups in the 7 and 8 positions of isoalloxazine ring in the riboflavin molecule for CF3, Cl, H, NH2 and N(CH3)2 resulted in the decrease of the analogue affinity to riboflavin kinase as compared with the natural substrate, vitamin B2. The most efficient enzyme inhibitors of analogues without substrate properties turned to be trifluoromethylisoalloxazines, containing 2'-hydroxyethyl group at N10. The elongation of D-ribityl lateral chain, the elimination of change of CH3-groups in the 7 and 8 positions for CF3- Cl-, COOH-substitutors resulted in the decrease of the inhibitory effect of flavines. Modifications in the structure of isoalloxazine ring, etherification of OH-groups in the lateral D-ribityl chain, and the introduction of volume substitutors (N-piperidyl, D-ribitylamine, hydroxyethylamine) prevented the interaction of the analogue with riboflavin kinase. Flavin nucleotides (FMN and FAD) did not affect the rate of vitamin B2 phosphorylation.  相似文献   

4.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

5.
The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by 13C, 15N, and 31P NMR techniques. The FAD prosthetic group was selectively enriched in 13C and 15N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The polarization of the isoalloxazine ring as a whole is, however, much more comparable to that of free flavin in a polar and protic environment than to free flavin in an apolar environment. The polarization of the ring system can be ascribed to strong hydrogen bonds between the apoprotein and the two carbonyl groups. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atoms strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. In the dithionite-reduced enzyme, the ring system is bent at the N(5) position. Due to the bending of the N(5) atom and the sp2 hybridized N(10) atom, electron density from the N(10) atom is reallocated at the C(4) carbonyl group. In contrast, in the substrate-reduced enzyme the N(5) atom is almost completely sp2 hybridized, yielding a rather planar isoalloxazine ring.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The fluorescence properties of various 8alpha-sulfur-linked flavinyl peptides and related flavin analogues were investigated as the pH solvent, temperature, and flavin concentration were varied. Substitution in the 8alpha position by a thioether-linked peptide brings about a marked quenching of fluorescence (up to 98% in water), a slight bathochromic shift and broadening of the fluorescence emission spectra, and a slight decrease in the fluorescence lifetimes. Oxidation of the thioether function to a sulfone partially releases this fluorescence quenching without further changes in the fluorescence emission spectra. The primary effect on the fluorescence intensity is due to an interaction between the nonbonding electrons of the thioether, the hydrogen-bonding, polar solvent, and the isoalloxazine ring. Dissolving these flavinyl peptides in nonaqueous solvents increases the fluorescence intensity as much as 20-fold. A secondary effect on flavinyl fluorescence can be attributed to a collisional quenching by the vicinal tyrosyl residue within tyrosine-containing flavinyl peptides. The fluorescence properties provide further confirmation of the identity of the synthetic and naturally obtained flavinyl peptides and of the interaction between the free-hydroxyl functions of the ribityl side chain and the thioether.  相似文献   

7.
In addition to 8alpha-(N3-histidyl)riboflavin, 8alpha-(N1-histidyl)riboflavin is also formed during the reaction of Nalpha-blocked histidine with 8alpha-bromotetraacetylriboflavin in a yield of 20-25% of the total histidylflavin fraction. The properties of 8alpha-(N1-histidyl)riboflavin are inditical with those of the histidylflavin isolated from thiamine dehydrogenase and beta-cyclopiazonate oxidocyclase but differ from those of 8alpha-(N3-histidyl)riboflavin. These properties include pKa of fluorescence quenching, electrophoretic mobility at pH 5.0, stability to storage, and reduction by NaBH4. Proof for 8alpha substitution is shown by the electron paramagnetic resonance and electron-nuclear double resonance spectra of the cationic semiquinone form, as well as by the proton magnetic resonance spectrum of the oxidized form. The site of histidine substitution by the 8alpha-methylene of the flavin moiety was shown by methylation of the imidazole ring with methyl iodide, cleavage of the methylhistidine-flavin bond by acid hydrolysis at 150 degrees C, and identification of the methylhistidine isomer by electrophoresis. 3-Methylhistidine is the product from the N1-histidylflavin isomer, while 1-methylhistidine is produced from the N3 isomer. The flavin product from reductive Zn cleavage of either isomer has been identified as riboflavin. The compound obtained on acid treatment of 8alpha-(N3-histidyl)riboflavin (previously thought to be the N1 isomer) differs from the parent compound only in the ribityl side chain, since chemical degradation studies show 1-methylhistidine as a product and a flavin product which differs from riboflavin only in mobility in thin-layer chromatography, but not in absorption, fluorescence, and electron paramagnetic resonance spectral properties. Proof that acid modification involves only the ribityl chain has come from the observations that alkaline irradiation of this flavin yields lumiflavin, that the proton magnetic resonance spectrum of the compound differs from that of riboflavin in the region of the ribityl proton resonance, and that its periodate titer is lower than that of authentic riboflavin. The identity of 8alpha-(N1-histidyl)riboflavin with the histidylflavin from thiamine dehydrogenase and beta-cyclopiazonate oxidocyclase shows that both isomeric forms of 8alpha-histidylflavin occur in nature.  相似文献   

8.
Various flavin analogs were used as alternate substrates or competitive inhibitors to characterize the FMN binding sites of the NADH- and NADPH-specific FMN oxidoreductases from Beneckea harveyi. Several polyhydroxyl compounds were found to be poor competitive inhibitors for the FMN sites of these enzymes. The FMN binding sites of the two enzymes were found to be quite similar. The NADH:FMN oxidoreductase binds FMN exclusively through the isoalloxazine ring. The methyl groups at positions 7 and 8 contribute significantly to this binding. Utilizing lumichrome as a competitive inhibitor of the FMN binding site and AMP as a competitive inhibitor of the NADH binding site, we were able to determine that the NADH:FMN oxidoreductase forms an active ternary complex with NADH binding first in an ordered mechanism. The NADPH oxidoreductase also binds FMN primarily through the isoalloxazine ring. Unlike their participation in reaction with the NADH-specfic enzyme, the methyl groups at positions 7 and 8 are not involved in binding. There was no significant binding of the ribityl phosphate moiety with either enzyme. Both enzymes have lower Km values for lumiflavin than FMN.  相似文献   

9.
Beta-Cyclopiazonate oxidocyclase from Penicillium cyclopium has been previously shown to contain flavin dinucleotide in covalent linkage to the protein. In the present study, a pure flavin mononucleotide peptide was isolated from the enzyme by tryptic-chymotryptic digestion, chromatography on Florisil and on diethylaminoethylcellulose, and hydrolysis with nucleotide pyrophosphatase. The flavin peptide contains 9 amino acids, including histidine in linkage to the flavin, and Asx as the N-terminal residue. The fluorescence of the flavin in the FMN peptide is profoundly quenched even at pH 3.2, where protonation of the imidazole prevents queching of the flavin fluorescence by histidine. This quenching appears to be due to interaction of the flavin with a tryptophan residue, as the quenching is abolished by oxidation of the tryptophan with performic acid. Similarly, the fluorescence of the tryptophan in the peptide is quenched, presumably by the flavin. The flavin of beta-cyclopiazonate oxidocylcase is attached, by the way of the 8alpha-methylene group, to the imidazole ring of a histidine. The aminoacylflavin isolated from the enzyme is identical in the pKa of its imidazole group, in reduction by NaBH4, and in other properties with synthetic 8alpha-(N1-histidyl)riboflavin. The pKa of the histidylriboflavin component of the oxidocyclase is 5.2 before and 5.0 after acid modification of the ribityl chain, as is found in the synthetic derivative. It is concluded that the enzyme contains the N1 isomer of histidylriboflavin and that acid hydrolysis of flavin peptides isolated from the oxidocyclase, while liberating histidylriboflavin, also causes acid modification of the ribityl chain of the flavin moiety.  相似文献   

10.
The oxidized and hydroquinone forms of synthetic 8 alpha-N-imidazolylriboflavin have been investigated by proton nuclear magnetic resonance spectroscopy at 360 MHz. Proton resonances due to the imidazole ring, isoalloxazine ring, and ribityl side chain have been assigned on the basis of two-dimensional 1H-1H correlated spectra (COSY), selective decoupling, and nuclear Overhauser effect difference spectra and by comparison of computer-simulated with experimental spectra. The effect of pH on the imidazolyl resonances shows a pKa for the unsubstituted imidazole nitrogen of 6.0 +/- 0.1 for the oxidized form and a value of 7.0 +/- 0.1 for the reduced form, in good agreement with the values obtained from oxidation-reduction potential data in a previous paper [Williamson, G., & Edmondson, D. E. (1985) Biochemistry 24, 7790-7797]. Slow exchange of the flavin 8 alpha-methylene and imidazolyl C(2) protons was observed at pH 6.1 but not at pH values below 4.0 for the oxidized form of the flavin. The reduced form, but not the oxidized form, of the flavin exhibits geminal coupling of the 8 alpha-methylene protons and of the C(1') methylene protons of the ribityl side chain. The magnetic nonequivalence of the protons of these two methylene groups is suggested to result from intermolecular association of the reduced flavin in aqueous solutions at the concentrations required for the spectral experiments.  相似文献   

11.
By surveying compounds having isoalloxazine derived from flavins on a high performance liquid chromatogram with fluorescence detection, two new flavin derivatives were found in human urine. These two compounds were purified by partition chromatography on a cellulose column and by paper chromatography with several solvent systems, and their structures were determined to be 7 alpha-hydroxyriboflavin and 8 alpha-hydroxyriboflavin. The relative distributions, measured by high performance liquid chromatography, of 7 alpha- and 8 alpha-hydroxyriboflavin, riboflavin, and hydroxyethylflavin and its derivative were calculated to be 31.1, 5.0, 25.6, 4.9, and 21.9%, respectively, to total flavins in normal human urine obtained in early morning. The excretion of 7 alpha- and 8 alpha-hydroxyriboflavin in human urine indicates the occurrence of a metabolic pathway of the isoalloxazine ring of flavin at its 7 alpha and 8 alpha positions.  相似文献   

12.
The covalent bonding of riboflavin to succinic dehydrogenase is accomplished via the 8-α (methyl group) carbon and probably the 3 nitrogen of histidine. The absence of a carbon of this configuration in 7-methyl-8-ethyl-10-(1′-d-ribityl)isoalloxazine suggests that such bonding could not take place with this flavin; however, studies of the enzyme in rat tissues containing only this flavin homolog provides evidence that the bonding does take place. Administration of this homolog to weanling rats as their only source of flavin permits a normal rate of growth and development. During the first 40 days the succinic acid hydrogenase activities for the kidney, heart, and liver fall precipitously to 70, 60, and 55%, respectively, of normal and they are then maintained at these levels. These animals, as well as comparable animals receiving the isomeric 7-ethyl-8-methyl-10-(1′-d-ribityl)isoalloxazine, thrive while receiving a daily supplement of the homologs but they show an immediate flavin-deficiency response as a loss of weight when the flavins are withheld. The administration of 7,8-diethyl-10-(1′-d-ribityl)isoalloxazine, a potent competitive antagonist of riboflavin, to adult rats causes changes in the succinic dehydrogenase activities of the kidney, heart, and liver which mimic those observed when the animal is deprived of riboflavin.  相似文献   

13.
Various 8 alpha-sulfur-linked peptides related to the flavinyl peptides isolated from mitochondrial monoamine oxidase were synthesized in high yield and purity. The peptides, protected by an acetyl-blocking group on the amino terminus, were synthesized by conventional liquid-phase techniques and coupled to a tetraacetylriboflavin derivative activated in the 8alpha position. In some cases, the ribityl side chains of the flavinyl peptides were selectively deacetylated. In other cases, the thioether functions were oxidized to form sulfones. These flavinyl peptides were studied by uv-visible absorption and circular dichroic spectroscopies. A close correspondence in spectroscopic and other chemical properties indicated the identity of the synthetic and naturally obtained flavinyl peptides. Differences between the tetraacetylriboflavinyl and riboflavinyl peptides indicate an interaction between the ribityl side chain and thioether function in aqueous media. Evidence was obtained for an intramolecular complex between the tyrosyl and isoalloxazine moieties in aqueous media. Substitution in the 8alpha position was accompanied by an impairment of the protonation of the N1 position of the isoalloxazine ring and a lowering of the redox potential relative to the parent 8-methyflavins.  相似文献   

14.
Murray TA  Foster MP  Swenson RP 《Biochemistry》2003,42(8):2317-2327
A mechanism has been proposed for the binding of flavin mononucleotide (FMN) and riboflavin to the apoflavodoxin from Desulfovibrio vulgaris [Murray, T. A., and Swenson, R. P. (2003) Biochemistry 42, 2307-2316]. In this model, the binding of the flavin isoalloxazine ring is dependent on the presence of a phosphate moiety in the phosphate-binding subsite, suggesting a cooperative interaction between that region and the ring-binding subsite. In the absence of inorganic phosphate, FMN can bind through the initial association of its 5'-phosphate group in the phosphate-binding subsite followed by insertion of the flavin ring. Because riboflavin lacks the 5'-phosphate group, it is unable to bind to this apoprotein in the absence of inorganic phosphate in solution. However, inorganic phosphate can enhance the rate of ring binding by occupying the phosphate-binding subsite. In this paper, NMR, near-UV circular dichroism (CD), and fluorescence spectroscopy provide evidence for a phosphate-induced conformational change within the isoalloxazine ring-binding subsite. Phosphate-dependent changes in the chemical shifts of 22 amide groups were observed in (1)H-(15)N HSQC NMR spectra. The majority of these groups are proximal to the phosphate-binding subsite or the loops that constitute the isoalloxazine ring-binding site. Also, a phosphate-dependent change in the environment or position of the Trp60 side chain was apparent in the NMR data and was confirmed by associated changes in the near-UV CD and tryptophan fluorescence spectra when compared to the spectra of the W60A mutant. These data suggest that phosphate, either the 5'-phosphate of the FMN or inorganic phosphate from solution, facilitates the movement of the side chain of Trp60 out of the isoalloxazine ring-binding site and other associated conformational changes, creating a population of apoflavodoxin that is capable of binding the isoalloxazine ring. This conformational switch may explain why some apoflavodoxins cannot bind riboflavin and also supports the "aromatic gate" model proposed from the crystal structure of the Anabaena apoflavodoxin [Genzor, C. G., Perales-Alcon, A., Sancho, J., and Romero, A. (1996) Nat. Struct. Biol. 3, 329-332].  相似文献   

15.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens, was replaced by 6-hydroxy-FAD (an extra hydroxyl group on the carbon at position 6 of the isoalloxazine ring of FAD). The catalytic cycle of this modified enzyme was analyzed and compared to the function of native (FAD) enzyme. Transient state kinetic analyses of the multiple changes in the chemical state of the flavin were the principal methods used to probe the mechanism. Four known substrates of the native enzyme were used to probe the reaction. With the natural substrate, p-hydroxybenzoate, the 6-hydroxy-FAD enzyme activity was 12-15% of native enzyme, due to a slower release of product from the enzyme, and less than one product molecule was formed per NADPH oxidized, due to an increased rate of nonproductive decomposition of the transient peroxyflavin essential to the catalytic pathway. More extensive changes in mechanism were observed with the substrates, 2,4-dihydroxybenzoate and p-aminobenzoate. The results suggest that, during catalysis, when the reduced state of FAD is ready for oxygen reaction, the substrate is located below and close to the C-4a/N-5 edge of the isoalloxazine ring. The nature of the high extinction, transient state of flavin, formed upon transfer of oxygen to substrate is discussed. It is not a flavin cation, and is unlikely to be an oxygen-substituted analogue of N-3/C-4 dihydroflavin.  相似文献   

16.
A NAD(P)H:flavin oxidoreductase, which produces FMNH2, one of the substrates for the luciferase reaction in bioluminescent bacteria, has been purified with the aid of affinity chromatography on epsilon-aminohexanoyl-FMN-Sepharose. The purified enzyme, isolated from Beneckea harveyi, had a specific activity of 89 mumol of NADH oxidized/min/mg of protein at 23 degrees in the presence of saturating FMN and NADH and appeared homogeneous by several criteria on polyacrylamide gel electrophoresis. A molecular weight of 24,000 was estimated both by gel filtration and and sodium dodecyl sulfate gel electrophoresis indicating that the enzyme is composed of a single polypeptide chain. Kinetic studies showed that the higher specificity of the enzyme for NADH than NADPH and for riboflavin and FMN than FAD was primarily due to variations in the Michaelis constants for the different substrates. Initial velocity studies with all pairs of substrates gave intersecting patterns supporting a sequential mechanism for the NAD(P)H:flavin oxidoreductase.  相似文献   

17.
The inhibition of rabbit skeletal muscle glycogen phosphorylase b by FAD and its analogues with substitutes in the position 8 has been studied. The value of half-saturation, [I]0,5, for inhibitors increases in the following order: FAD (44 microM), 8 alpha-hydroxy-FAD (60 microM), 8-dimethylamino (nor)-FAD (69 microM), 8 alpha-(N-acetyl-L-cystein-S-yl)-FAD (106 microM). From the comparison of these values with those obtained earlier for FMN analogues, it follows that in the case of FAD the half-saturation value is less sensitive to modification of the position 8 in the flavin isoalloxazine ring. The existence of the glycogen phosphorylase b FAD-complex has been proved by the spectrophotometry and sedimentation methods. The positions of maxima of optical absorption of the enzyme-bound FAD in the 300-500 nm region are identical with corresponding positions for FMN. FAD has been shown to hinder the AMP-induced transition of dimeric form of the enzyme to tetrameric one.  相似文献   

18.
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

19.
Human glutathione reductase (NADPH + GSSG + H+ in equilibrium with NADP+ + 2 GSH) is a suitable enzyme for correlating spectroscopic properties and chemical reactivities of protein-bound FAD analogues with structural data. FAD, the prosthetic group of the enzyme, was replaced by FAD analogues, which were modified at the positions 8, 1, 2, 4, 5 and 6, respectively, of the isoalloxazine ring. When compared with a value of 100% for native glutathione reductase, the specific activities of most enzyme species ranged from 40% to 17%, in the order of the prosthetic groups 8-mercapto-FAD greater than 8-azido-FAD = 8-F-FAD = 8-C1-FAD greater than 4-thio-FAD = 1-deaza-FAD greater than 2-thio-FAD. The enzymic activities indicate a correct orientation of the bound analogues. The enzyme species containing 5-deaza-FAD and 6-OH-FAD, respectively, had no more glutathione reductase activity than the FAD-free apoenzyme. 5-Deaza-FAD X glutathione reductase was crystallized for X-ray diffraction analysis. Detailed studies were focussed on position 8 of the flavin. 8-Cl-FAD X glutathione reductase and 8-F-FAD X glutathione reductase reacted only poorly with HS- to give 8-mercapto-FAD X glutathione reductase, which suggests that the region around Val61 hinders the halogen anion from leaving the tetrahedral intermediate. Other experiments showed that position 8 is accessible to certain solvent-borne reagents. 8-Mercapto-FAD X glutathione reductase, for instance, reacted readily and stoichiometrically with the thiol reagent methylmethanethiosulfonate. 8-Mercapto-FAD X glutathione reductase does not exhibit a long wavelength charge transfer absorption band upon reduction, as it is the case for the 2-electron-reduced FAD-containing enzyme. This behaviour indicates that the charge transfer interaction between flavin and the thiolate of Cys63 in the native enzyme is not per se essential for catalysis. The absorption spectrum of the blue anionic 8-mercapto-FAD bound to glutathione reductase suggests that the protein concurs to the stabilization of a negative charge in the pyrimidine subnucleus. In light of the protein structure this effect is attributed to the dipole moment of alpha-helix 338-354 which starts out close to the N(1)/C(2)/O(2 alpha) region of the flavin. 1-Deaza-FAD binds as tightly as FAD to the apoenzyme. The resulting holoenzyme was found to be enzymically active but structurally unstable. In this respect 1-deaza-FAD . glutathione reductase mimics the properties of the enzyme species found in inborn glutathione reductase deficiency.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Novobiocic acid synthetase, a key enzyme in the biosynthesis of the antibiotic novobiocin, was cloned from the novobiocin producer Streptomyces spheroides NCIMB 11891. The enzyme is encoded by the gene novL, which codes for a protein of 527 amino acids with a calculated mass of 56,885 Da. The protein was overexpressed as a His(6) fusion protein in Escherichia coli and purified to apparent homogeneity by affinity chromatography and gel chromatography. The purified enzyme catalyzed the formation of an amide bond between 3-dimethylallyl-4-hydroxybenzoic acid (ring A of novobiocin) and 3-amino-4,7-dihydroxy-8-methyl coumarin (ring B of novobiocin) in an ATP-dependent reaction. NovL shows homology to the superfamily of adenylate-forming enzymes, and indeed the formation of an acyl adenylate from ring A and ATP was demonstrated by an ATP-PP(i) exchange assay. The purified enzyme exhibited both activation and transferase activity, i.e. it catalyzed both the activation of ring A as acyl adenylate and the subsequent transfer of the acyl group to the amino group of ring B. It is active as a monomer as determined by gel filtration chromatography. The reaction was specific for ATP as nucleotide triphosphate and dependent on the presence of Mg(2+) or Mn(2+). Apparent K(m) values for ring A and ring B were determined as 19 and 131 micrometer respectively. Of several analogues of ring A, only 3-geranyl-4-hydroxybenzoate and to a lesser extent 3-methyl-4-aminobenzoate were accepted as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号