首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 receptor, is a chemokine involved in chemotaxis and brain development that also acts as co-receptor for HIV-1 infection. We previously demonstrated that CXCR4 and SDF-1alpha are expressed in cultured type-I cortical rat astrocytes, cortical neurones and cerebellar granule cells. Here, we investigated the possible functions of CXCR4 expressed in rat type-I cortical astrocytes and demonstrated that SDF-1alpha stimulated the proliferation of these cells in vitro. The proliferative activity induced by SDF-1alpha in astrocytes was reduced by PD98059, indicating the involvement of extracellular signal-regulated kinases (ERK1/2) in the astrocyte proliferation induced by CXCR4 stimulation. This observation was further confirmed showing that SDF-1alpha treatment selectively activated ERK1/2, but not p38 or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Moreover, both astrocyte proliferation and ERK1/2 phosphorylation, induced by SDF-1alpha, were inhibited by pertussis toxin (PTX) and wortmannin treatment indicating the involvement of a PTX sensitive G-protein and of phosphatidyl inositol-3 kinase in the signalling of SDF-1alpha. In addition, Pyk2 activation represent an upstream components for the CXCR4 signalling to ERK1/2 in astrocytes. To our knowledge, this is the first report demonstrating a proliferative effect for SDF-1alpha in primary cultures of rat type-I astrocytes, and showing that the activation of ERK1/2 is responsible for this effect. These data suggest that CXCR4/SDF-1 should play an important role in physiological and pathological glial proliferation, such as brain development, reactive gliosis and brain tumour formation.  相似文献   

2.
The coupling of the group I metabotropic glutamate receptors, mGlu1a and mGlu5a, to the extracellular signal-regulated protein kinase (ERK) pathway has been studied in Chinese hamster ovary cell-lines where receptor expression is under inducible control. Both mGlu receptors stimulated comparable, robust and agonist concentration-dependent ERK activations in the CHO cell-lines. The mGlu1a receptor-mediated ERK response was almost completely attenuated by pertussis toxin (PTx) pretreatment, whereas the mGlu5a-ERK response, and the phosphoinositide response to activation of either receptor, was PTx-insensitive. mGlu1a and mGlu5a receptor coupling to ERK occurred via mechanisms independent of phosphoinositide 3-kinase activity and intracellular and/or extracellular Ca2+ concentration. While acute treatment with a protein kinase C (PKC) inhibitor did not attenuate agonist-stimulated ERK activation, down-regulation of PKCs by phorbol ester treatment for 24 h did attenuate both mGlu1a and mGlu5a receptor-mediated responses. Further, inhibition of Src non-receptor tyrosine kinase activity by PP1 attenuated the ERK response generated by both receptor subtypes, but only mGlu1a receptor-ERK activation was attenuated by PDGF receptor tyrosine kinase inhibitor AG1296. These findings demonstrate that, although expressed in a common cell background, these closely related mGlu receptors utilize different G proteins to cause ERK activation and may recruit different tyrosine kinases to facilitate this response.  相似文献   

3.
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignant tumor and is refractory to conventional chemotherapy. The aim of this study is therefore to elucidate the mechanism of chemoresistance in ICC which is not fully understood. We generated cisplatin resistant ICC cells via long term exposure to cisplatin and found that these cells are also resistant to 5-fluorouracil (5-FU) and gemcitabine. The chemoresistant cells showed enhanced Bcl-2 expression and reduced Bax expression compared to parental ICC cells. In addition, the resistant cells showed enhanced activation of AKT and extracellular signal-regulated kinase (ERK) 1/2. Inhibition of AKT activation by phosphoinocitide 3-kinase (PI3K) inhibitor LY294002 resulted in reduced Bcl-2 expression and enhanced Bax expression and thus induced apoptosis in the resistant cells, whereas inhibition of ERK1/2 activation by mitogen-activated protein kinase (MEK) inhibitor U0126 did not induce apoptosis without affecting the expression of Bcl-2 and Bax but decreased cell growth. Moreover, the inhibition of AKT or ERK1/2 sensitized the resistant cells to cisplatin and therefore resulted in greatly enhanced cisplatin-induced apoptosis and growth inhibition in the cells. The results indicate that AKT and ERK1/2 signaling mediate chemoresistance in the cells and could be important therapeutic targets for overcoming chemoresistance in ICC.  相似文献   

4.
Lower micromolar concentrations of peroxovanadium compound potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV (phen)] stimulate RINm5F cell metabolic activity. 1 and 3 mol/L bpV (phen) induces strong and sustained activation of extracellular signal-regulated kinase (ERK). However, it seems that bpV (phen) does not effect c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. In addition, bpV (phen) induces mitogen-activated protein kinase phosphatase-1 (MKP-1) expression. We found that ERK activation could be completely abolished if RINm5F cells were incubated with both bpV (phen) and PD 98059, a specific inhibitor of upstream ERK kinase MEK1. On the other hand, this combined treatment up-regulated activation of stress kinases, JNK and p38 MAPK, significantly suppressed MKP-1 expression and induced cell death. Thus, our results suggest that the mechanism underlying bpV (phen) survival-enhancing effect could be associated with induced ERK activation and MKP-1 expression.  相似文献   

5.
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.  相似文献   

6.
Acute mu opioid application has been shown to activate extracellular signal-related kinases (ERKs) in various non-neural cell lines. However, ERK activation in neuronal cells following acute morphine treatment is more questionable. Moreover, the ERK activation phenomenon observed in vivo after withdrawal of chronic opioids has never been demonstrated in vitro. The goal of this study was to determine if mu agonist treatment induced ERK activation acutely or after withdrawal of chronic opioids in one glial and three neuronal cell lines. We found that acute application of opioids was not able to activate ERK in neuronal cell lines but was able to activate ERK in a glial cell line. In another set of experiments, cells were chronically treated with escalating doses of a mu opioid agonist. After 8 days, the agonist was removed from the media and naloxone applied. Acute ERK activation was not seen in any tested cell line after agonist removal. These findings suggest that opioids may acutely activate ERK in non-neuronal cells, and that the acute ERK activation observed in some brain regions during opioid withdrawal in vivo might be mediated by indirect effects on neuronal cells.  相似文献   

7.
Histamine H2 receptor (H2R) is a member of G protein-coupled receptor family. Agonist stimulation of H2R results in several cellular events including activation of adenylate cyclase and phospholipase C, desensitization of the receptor, activation of extracellular signal-regulated kinases ERK1/2, and receptor endocytosis. In this study, we identified a GTPase dynamin as a binding partner of H2R. Dynamin could associate with H2R both in vitro and in vivo. Functional analyses using dominant-negative form of dynamin (K44E-dynamin) revealed that cAMP production and the following H2R desensitization are independent of dynamin. However, the agonist-induced H2R internalization was inhibited by co-expression of K44E-dynamin. Furthermore, activation of extracellular-signal regulated kinases ERK1/2 in response to dimaprit, an H2R agonist, was attenuated by K44E-dynamin. Although H2R with truncation of 51 amino acids at its carboxy-terminus did not internalize after agonist stimulation, it still activated ERK1/2, but the degree of this activation was less than that of the wild-type receptor. Finally, K44E dynamin did not affect ERK1/2 activation induced by internalization-deficient H2R. These results suggest that the agonist-induced H2R internalization and ERK1/2 activation are partially dynamin-dependent. Furthermore, ERK1/2 activation via H2R is likely dependent of the endocytotic process rather than dynamin itself.  相似文献   

8.
ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.  相似文献   

9.
Intracellular activation and trafficking of extracellular signal-regulated protein kinases (ERK) play a significant role in cell cycle progression, contributing to developmental brain activities. Additionally, mitochondria participate in cell signalling through energy-linked functions, redox metabolism and activation of pro- or anti-apoptotic proteins. The purpose of the present study was to analyze the presence of ERK1/2 in mitochondria during rat brain development. Immunoblotting, immune electron microscopy and activity assays demonstrated that ERK1/2 are present in fully active brain mitochondria at the outer membrane/intermembrane space fraction. Besides, it was observed that ERK1/2 translocation to brain mitochondria follows a developmental pattern which is maximal between E19-P2 stages and afterwards declines at P3, just before maximal translocation to nucleus, and up to adulthood. Most of mitochondrial ERK1/2 were active; upstream phospho-MAPK/ERK kinases (MEK1/2) were also detected in the brain organelles. Mitochondrial phospho-ERK1/2 increased at 1 microm hydrogen peroxide (H(2)O(2)) concentration, but it decreased at higher 50-100 microm H(2)O(2), almost disappearing after the organelles were maximally stimulated to produce H(2)O(2) with antimycin. Our results suggest that developmental mitochondrial activation of ERK1/2 cascade contributes to its nuclear translocation effects, providing information about mitochondrial energetic and redox status to the proliferating/differentiating nuclear pathways.  相似文献   

10.
Accumulating evidence indicates that antidepressants alter intracellular signalling mechanisms resulting in long-term synaptic alterations which probably account for the delay in clinical action of these drugs. Therefore, we investigated the effects of chronic fluoxetine administration on extracellular signal-regulated kinase (ERK) 1 and 2, a group of MAPKs that mediate signal transduction from the cell surface downstream to the nucleus. Our data demonstrate that 3-week fluoxetine treatment resulted in long-lasting reduction of phospho-ERK 1 and 2. Such an effect depends on the length of the treatment given that no changes were observed after a single drug injection or after 2 weeks of treatment and it is region specific, being observed in hippocampus and frontal cortex but not in striatum. Finally, phospho-ERK 1 and 2 were differently modulated within nucleus and cytosol in hippocampus but similarly reduced in the same compartments of the frontal cortex, highlighting the specific subcellular compartmentalization of fluoxetine. Conversely, imipramine did not reduce the hippocampal phosphorylation of both ERK subtypes whereas it selectively increased ERK 1 phosphorylation in the cytosolic compartment of frontal cortex suggesting a drug-specific effect on this intracellular target. These results point to modulation of phosphorylation, rather than altered expression, as the main target in the action of fluoxetine on this pathway. The reduction of ERK 1/2 function herein reported may be associated with the therapeutic effects of fluoxetine in the treatment of depression.  相似文献   

11.
12.
Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management.  相似文献   

13.
Heat and cold hyperalgesia is a common feature of inflammatory pain. To investigate whether activation of extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1, in primary sensory neurons participates in inflammatory pain, we examined the phosphorylation of ERK5 in the dorsal root ganglion (DRG) after peripheral inflammation. Inflammation induced by complete Freund's adjuvant produced heat and cold hyperalgesia on the ipsilateral hind paw and induced an increase in the phosphorylation of ERK5, mainly in tyrosine kinase A-expressing small- and medium-size neurons. In contrast, there was no change in ERK5 phosphorylation in the spinal dorsal horn. ERK5 antisense, but not mismatch, oligodeoxynucleotide decreased the activation of ERK5 and suppressed inflammation-induced heat and cold hyperalgesia. Furthermore, the inhibition of ERK5 blocked the induction of transient receptor potential channel TRPV1 and TRPA1 expression in DRG neurons after peripheral inflammation. Our results show that ERK5 activated in DRG neurons contribute to the development of inflammatory pain. Thus, blocking ERK5 signaling in sensory neurons that has the potential for preventing pain after inflammation.  相似文献   

14.
Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disorder characterized by the extracellular deposition of transthyretin (TTR), especially in the PNS. Given the invasiveness of nerve biopsy, salivary glands (SG) from FAP patients were used previously in microarray analysis; mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) was down-regulated in FAP. Results were validated by RT-PCR and immunohistochemistry both in SG and in nerve biopsies of different stages of disease progression. MKP-3 was also down-regulated in FAP SG biopsies. Given the relationship between MKPs and MAPKs, the latter were investigated. Only extracellular signal-regulated kinases 1/2 (ERK1/2) displayed increased activation in FAP SG and nerves. ERK1/2 kinase (MEK1/2) activation was also up-regulated in FAP nerves. In addition, an FAP transgenic mouse model revealed increased ERK1/2 activation in peripheral nerve affected with TTR deposition when compared to control animals. Cultured rat Schwannoma cell line treatment with TTR aggregates stimulated ERK1/2 activation, which was partially mediated by the receptor for advanced glycation end-products (RAGE). Moreover, caspase-3 activation triggered by TTR aggregates was abrogated by U0126, a MEK1/2 inhibitor, indicating that ERK1/2 activation is essential for TTR aggregates-induced cytotoxicity. Taken together, these data suggest that abnormally sustained activation of ERK in FAP may represent an early signaling cascade leading to neurodegeneration.  相似文献   

15.
Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca2+ and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca2+ chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause.  相似文献   

16.
17.
R Pulido  A Zú?iga  A Ullrich 《The EMBO journal》1998,17(24):7337-7350
Protein kinases and phosphatases regulate the activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by controlling the phosphorylation of specific residues. We report the physical and functional association of ERK1/2 with the PTP-SL and STEP protein tyrosine phosphatases (PTPs). Upon binding, the N-terminal domains of PTP-SL and STEP were phosphorylated by ERK1/2, whereas these PTPs dephosphorylated the regulatory phosphotyrosine residues of ERK1/2 and inactivated them. A sequence of 16 amino acids in PTP-SL was identified as being critical for ERK1/2 binding and termed kinase interaction motif (KIM) (residues 224-239); it was shown to be required for phosphorylation of PTP-SL by ERK1/2 at Thr253. Co-expression of ERK2 with catalytically active PTP-SL in COS-7 cells impaired the EGF-induced activation of ERK2, whereas a PTP-SL mutant, lacking PTP activity, increased the ERK2 response to EGF. This effect was dependent on the presence of the KIM on PTP-SL. Furthermore, ERK1/2 activity was downregulated in 3T3 cells stably expressing PTP-SL. Our findings demonstrate the existence of a conserved ERK1/2 interaction motif within the cytosolic non-catalytic domains of PTP-SL and STEP, which is required for the regulation of ERK1/2 activity and for phosphorylation of the PTPs by these kinases. Our findings suggest that PTP-SL and STEP act as physiological regulators of the ERK1/2 signaling pathway.  相似文献   

18.
彭斌  王静  胡源  许兴智 《生命科学》2014,(11):1120-1135
DNA损伤应答(DNA damage response,DDR)是维持基因组稳定性的核心机制,对DDR的研究不仅有助于阐明癌症发生发展的机理,同时也为癌症治疗和抗癌新药开发提供生物学基础。蛋白质翻译后修饰,尤其是蛋白激酶介导的磷酸化修饰和蛋白磷酸酶介导的去磷酸化修饰,参与调控绝大多数的生命活动过程,包括DDR。对蛋白激酶ATM/ATR/CHK2/CHK1介导的DDR的研究已经比较透彻,但是对蛋白磷酸酶在DDR中的功能研究还有待加强和深入。比较全面地综述丝氨酸/苏氨酸蛋白磷酸酶在DDR中的功能并探讨在抗癌新药开发中的前景。  相似文献   

19.
We investigated if extracellular signal-regulated kinases (ERK) and oxidative stress are involved in the pathogenesis of arterial hypertension induced by chronic leptin administration in the rat. Leptin was administered at a dose of 0.25 mg/kg twice daily s.c. for 4 or 8 days. Blood pressure (BP) was higher in leptin-treated than in control animals from the third day of the experiment. The superoxide dismutase (SOD) mimetic, tempol, normalized BP in leptin-treated rats on days 6, 7 and 8, whereas the ERK inhibitor, PD98059, exerted a hypotensive effect on days 3 through 6. Leptin increased ERK phosphorylation level in renal and aortic tissues more markedly after 4 than after 8 days of treatment. In addition, leptin reduced urinary Na(+) excretion and increased renal Na(+),K(+)-ATPase activity, and these effects were abolished on days 4 and 8 by PD98059 and tempol, respectively. The levels of NO metabolites and cGMP were reduced in animals receiving leptin for 8 days. Markers of oxidative stress (H(2)O(2) and lipid peroxidation products) were elevated to a greater extent after 4 than after 8 days of leptin treatment. In contrast, nitrotyrosine, a marker of protein nitration by peroxynitrite, was higher in animals receiving leptin for 8 days. NADPH oxidase inhibitor, apocynin, prevented leptin's effect on BP, ERK, Na(+),K(+)-ATPase/Na(+) excretion and NO formation at all time points. SOD activity was reduced, whereas glutathione peroxidase (GPx) activity was increased in the group treated with leptin for 8 days. These data indicate that: (1) ERK, activated by oxidative stress, is involved only in the early phase of leptin-induced BP elevation, (2) the later phase of leptin-induced hypertension is characterized by excessive NO inactivation by superoxide, (3) the time-dependent shift from ERK to O(2)(-)-NO dependent mechanism may be associated with reduced SOD/GPx ratio, which favors formation of O(2)(-) instead of H(2)O(2).  相似文献   

20.
The prostacyclin mimetic cicaprost increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Chinese hamster ovary cells transiently expressing human (hIP-CHO) or mouse prostacyclin (mIP-CHO) receptors, but not in human neuroblastoma SK-N-SH cells or rat/mouse neuroblastoma-glioma NG108-15 cells which endogenously express IP receptors. Cicaprost stimulated ERK1/2 activity in hIP-CHO and mIP-CHO cells with EC50 values of 60 and 83 nM, respectively, and this response was significantly inhibited by protein kinase C inhibitors and agents which elevate cyclic AMP. A poor correlation was discovered between the level of ERK1/2 activity and the ability of agents to increase or decrease cyclic AMP production. The potent inhibitory effect of 3-isobutyl-1-methyl xanthine on cicaprost-stimulated phospho-ERK1/2 may be due to inhibition of phosphoinositide 3-kinase. Therefore, IP receptor-mediated activation of ERK1/2 in CHO cells occurs through a Gq/11/protein kinase C-dependent and a phosphoinoside 3-kinase-dependent process which is insensitive to IP receptor-generated cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号