首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identification of free and [Fe2S2]-bound cysteine residues of adrenodoxin   总被引:3,自引:0,他引:3  
Bovine adrenodoxin was labeled with 5-iodoacetamidofluorescein to determine which of the five cysteines is free and which participate in iron coordination. Native protein was labeled at two stoichiometries, 0.15:1 and 1:1, both of which produced a single fluorescent product. Labeled tryptic peptides were isolated from both preparations and identified as residues 90-98 with 5-acetamidofluorescein cysteine at residue 95. From the preparation labeled at 0.15:1 stoichiometry, the fraction of tryptic peptide containing nonlabeled cysteines 92 and 95 was isolated and identified; this peptide was shown to be absent in the sample labeled at 1:1 stoichiometry. 5-Acetamidofluorescein-labeled adrenodoxin supported electron transport with adrenodoxin reductase and cytochromes P-450sec and P-45011 beta, demonstrating that labeling occurred without disruption of the iron-sulfur center. These results identify cysteine 95 as the most reactive and single free thiol in native adrenodoxin and imply the role of cysteine residues 46 [corrected], 52, 55, and 92 in iron-sulfur coordination.  相似文献   

3.
An assay that measures the reduced, oxidized, and protein-bound forms of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma is described. Oxidized and protein-bound thiols are converted to their reduced counterparts by the use of NaBH4, and, following derivatization with monobromobimane (mBrB), the thiol-bimane adducts are quantified by reversed-phase ion-pair liquid chromatography and fluorescence detection. The presence of 50 microM dithioerythritol provides linearity of the standard curves at very low thiol concentrations. Selective determination of the oxidized forms was accomplished by blocking free sulfhydryl groups with N-ethylmaleimide (NEM) and excess NEM is inactivated by the subsequent addition of NaBH4. The reduced forms of the thiols in plasma were trapped with minimal oxidation by derivatizing blood samples at the time of collection. This was attained by drawing blood directly into tubes containing isotonic solutions of mBrB or NEM. The assay is sufficiently sensitive (less than 2 pmol) to detect the various forms of the four thiol compounds in human plasma. The analytical recovery of cysteine, cysteinylglycine, homocysteine, and glutathione was close to 100%, and the within-day precision corresponded to a coefficient of variation of 7, 8, 6, and 7%, respectively. The assay has been used to determine the various forms of the four thiol compounds in human plasma.  相似文献   

4.
Incubation of the material secreted by activated platelets leads to the formation of disulfide-linked dimers and multimers of one of the proteins, thrombospondin. To determine whether these complexes formed as a result of thiol-disulfide exchange (no change in the number of thiols) or of oxidation of thiols (a decrease in the number of thiols), the number of thiols in TSP was measured during formation of multimers. The number of thiols increased from about 3/mol to 4.8/mol. The half-time for the disappearance of monomers of thrombospondin was fourfold greater than the half-time for appearance of new thiols. The appearance of new thiols, as well as the formation of multimers, was inhibited by Ca2+. The appearance of new thiols was reversible; addition of Ca2+ reversed the process, and at pH 8, but not at pH 6 or 7, the appearance of new thiols spontaneously reversed. No new thiols formed during incubation of partially purified thrombospondin or after the supernatant solution had been treated with activated thiol-Sepharose to remove reactive thiol compounds. It is concluded that thrombospondin has a disulfide bond that is unstable in the absence of Ca2+. It can be attacked by a thiol of another molecule of thrombospondin to form disulfide-linked multimers, by a thiol of the same molecule of thrombospondin to generate isomerization of disulfide bonds or, as observed in this study, by another secreted thiol compound to give a mixed disulfide and a new thiol.  相似文献   

5.
Mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe has been prepared under a stable form and in relatively high amounts by an improved purification procedure. Specific chemical modification of the enzyme by the thiol reagent N-ethylmaleimide (NEM) at pH 6.8 leads to complete inactivation characterized by complex kinetics and pH dependence, indicating that several thiols are related to the enzyme activity. A complete protection against NEM effect is afforded by low concentrations of nucleotides in the presence of Mg2+, with ADP and ATP being more efficient than GTP. A total binding of 5 mol of [14C]NEM/mol of F1-ATPase is obtained when the enzyme is 85% inactivated: 3 mol of the label are located on the alpha-subunits and 2 on the gamma-subunit. Two out of the 3 mol on the alpha-subunits bind very rapidly before any inactivation occurs, indicating that the two thiols modified are unrelated to the inactivation process. Complete protection by ATP against inactivation by NEM prevents the modification of three essential thiols out of the group of five thiols labeled in the absence of ATP: one is located on a alpha-subunit and two on the gamma-subunit. These two essential thiols of the gamma-subunit can be differentiated by modification with 6,6'-dithiodinicotinic acid (CPDS), another specific thiol reagent. A maximal binding of 4 mol of [14C]CPDS/mol of enzyme is obtained, concomitant to a 25% inhibition. Sequential modification of the enzyme by CPDS and [14C]NEM leads to the same final deep inactivation as that obtained with [14C]NEM alone. One out of the two thiols of the gamma-subunit is no longer accessible to [14C]NEM after CPDS treatment. When incubated at pH 6.8 with [3H]ATP in the presence of Mg2+, F1-ATPase is able to bind 3, largely exchangeable, mol of nucleotide/mol of enzyme. Modification of the three essential thiols by NEM dramatically decreases the binding of 3H-nucleotide down to about 1 mol/mol of enzyme. Partial modification modifies the cooperative properties, the enzyme being no longer sensitive to anion activation.  相似文献   

6.
Oxidation/reduction reactions of protein thiol groups (PSH) have been implicated in many physiological and pathological processes. Although many new techniques for separation and identification of modified cysteinyl residues in proteins have been developed, critical assessment of reagents and sample processing often are overlooked. We carefully compared the effectiveness of N-ethylmaleimide (NEM), iodoacetamide (IAM), and iodoacetic acid (IAA) in alkylating protein thiols and found that NEM required less reagent (125 vs. 1000 mol:mol excess), required less time (4 min vs. 4h), and was more effective at lower pHs (4.3 vs. 8.0) in comparison with IAM and IAA. The relative efficacy of dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP) for reducing protein disulfides suspended in NaPO(4) buffer or MeOH was assessed, and no differences in total normalized fluorescence were detected at the concentrations tested (10-100mM); however, individual band resolution appeared better in samples reduced with DTT in MeOH. In addition, we found that oxidation ex vivo was minimized in tissue samples that were homogenized in aqueous buffers containing excess molar quantities of NEM compared with samples homogenized in MeOH containing NEM. Using NEM for thiol alkylation, DTT for disulfide reduction, and mBBr for labeling the reduced disulfide and fluorimetric detection, we were able to generate an in-gel standard curve and quantitate total disulfide contents within biological samples as well as to identify changes in specific protein bands by scanning densitometry. We demonstrated that reagents and techniques we have identified for disulfide detection in complex samples are also applicable to two-dimensional electrophoresis separations.  相似文献   

7.
Site-directed mutagenesis has been used to insert cysteine residues at specific locations in the myosin light chain 2 (LC2) sequence. The aim was to modify these cysteines with one or more spectroscopic probes and to reconstitute myosin with labeled light chains for structural studies. Native LC2 has two endogenous cysteine residues at positions 126 and 155; a third sulfhydryl was added by replacing either Pro2, Ser73, or Pro94 with cysteine. By oxidizing the endogenous cysteines to an intramolecular disulfide bond (Katoh, T., and Lowey, S., (1989) J. Cell Biol. 109, 1549), it was expected that the new cysteine could be selectively labeled with a fluorescent probe. This proved more difficult to accomplish than anticipated due to the formation of secondary disulfide bonds between the newly engineered cysteines and the native ones. Nevertheless, the unpaired cysteines were labeled with 5-(iodoacetamido)fluorescein, and singly labeled species were purified by ion-exchange chromatography. Chymotryptic digestion of the light chains, followed by high performance liquid chromatography separation of the peptides, led to the identification of the fluorescein-labeled cysteines. After light chain exchange into myosin, the position of the thiols was mapped by antifluorescyl antibodies in the electron microscope. Rotary-shadowed images showed the antibody bound at the head/rod junction of myosin for all the mutants. These mapping studies, together with the finding that widely separated cysteines can form multiple disulfide bonds, support a model for LC2 as a flexible, globular molecule that resembles other Ca/Mg-binding proteins in tertiary structure.  相似文献   

8.
Superfusates from rat brain slices were screened for thiol compounds after derivatization with monobromobimane by reversed-phase HPLC. Only glutathione and cysteine were detected. The Ca(2+)-dependent release of these compounds from slices of different regions of rat brain was investigated, applying a highly sensitive and reproducible quantification method, based on reduction of superfusates with dithiothreitol, reaction of thiols with iodoacetic acid, precolumn derivatization with o-phthalaldehyde reagent solution, and analysis with reversed-phase HPLC. This methodology allowed determination of reduced and total thiols in aliquots of the same superfusates. Mostly reduced glutathione and cysteine were released upon K+ depolarization and the Ca2+ dependency suggests that they originate from a neuronal compartment. The GSH release was most prominent in the mesodiencephalon, cortex, hippocampus, and striatum and lowest in the pons-medulla and cerebellum. This underscores a physiologically significant role for glutathione in CNS neurotransmission.  相似文献   

9.
Human metallothionein 1a, a protein with two cysteine‐rich metal‐binding domains (α with 11 Cys and β with 9), was analyzed in its metal‐free form by selective, covalent Cys modification coupled with ESI‐MS. The modification profiles of the isolated β‐ and α‐fragments reacted with p‐benzoquinone (Bq), N‐ethylmalemide (NEM) and iodoacetamide (IAM) were compared with the full length protein using ESI‐mass spectral data to follow the reaction pathway. Under denaturing conditions at low pH, the reaction profile with each modifier followed pathways that resulted in stochastic, Normal distributions of species whose maxima was equal to the mol. eq. of modifier added. Our interpretation of modification at this pH is that reaction with the cysteines is unimpeded when the full protein or those of its isolated domains are denatured. At neutral pH, where the protein is expected to be folded in a more compact structure, there is a difference in the larger Bq and NEM modification, whose reaction profiles indicate a cooperative pattern. The reaction profile with IAM under native conditions follows a similar stochastic distribution as at low pH, suggesting that this modifier is small enough to access the cysteines unimpeded by the compact structure. The data emphasize the utility of residue modification coupled with electrospray ionization mass spectrometry for the study of protein structure.  相似文献   

10.
Protein cysteine thiols can be divided into four groups based on their reactivities: those that form permanent structural disulfide bonds, those that coordinate with metals, those that remain in the reduced state, and those that are susceptible to reversible oxidation. Physicochemical parameters of oxidation-susceptible protein thiols were organized into a database named the Balanced Oxidation Susceptible Cysteine Thiol Database (BALOSCTdb). BALOSCTdb contains 161 cysteine thiols that undergo reversible oxidation and 161 cysteine thiols that are not susceptible to oxidation. Each cysteine was represented by a set of 12 parameters, one of which was a label (1/0) to indicate whether its thiol moiety is susceptible to oxidation. A computer program (the C4.5 decision tree classifier re-implemented as the J48 classifier) segregated cysteines into oxidation-susceptible and oxidation-non-susceptible classes. The classifier selected three parameters critical for prediction of thiol oxidation susceptibility: (1) distance to the nearest cysteine sulfur atom, (2) solvent accessibility, and (3) pKa. The classifier was optimized to correctly predict 136 of the 161 cysteine thiols susceptible to oxidation. Leave-one-out cross-validation analysis showed that the percent of correctly classified cysteines was 80.1% and that 16.1% of the oxidation-susceptible cysteine thiols were incorrectly classified. The algorithm developed from these parameters, named the Cysteine Oxidation Prediction Algorithm (COPA), is presented here. COPA prediction of oxidation-susceptible sites can be utilized to locate protein cysteines susceptible to redox-mediated regulation and identify possible enzyme catalytic sites with reactive cysteine thiols.  相似文献   

11.
1. The single highly reactive (class I) thiol group per 80000-mol.wt. subunit of skeletal-muscle phosphofructokinase was specifically carboxymethylated with iodo[2-14C]acetate, and after denaturation the remaining thiol groups were carboxymethylated with bromo[2-3H]acetate. After tryptic digestion and peptide 'mapping' it was found that the 14C radioactivity was in a spot that did not contain significant amounts of 3H radioactivity, so it is concluded that there is not a second, 'buried' cysteine residue within a sequence identical with that of the class-I cysteine peptide. 2. The total number of tryptic peptides as well as the number of those containing cysteine, histidine or tryptophan were inconsistent with the smallest polypeptide chain of phosphofructokinase (mol.wt. about 80000) being composed of two identical amino acid sequences. 3. The amino acid sequence of the tryptic peptide containing the class-I thiol group was shown to be Cys-Lys-Asp-Phe-Arg. This sequence is compared with part of the sequence containing the highly reactive thiol group of phosphorylase.  相似文献   

12.
Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2' azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by beta-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

13.
H H Pas  G T Robillard 《Biochemistry》1988,27(15):5515-5519
The cysteines of the membrane-bound mannitol-specific enzyme II (EIIMtl) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity [Roossien, F. F., & Robillard, G. T. (1984) Biochemistry 23, 211-215]. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linked cysteine was accomplished by inactivation with [14C]iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.  相似文献   

14.
Pitts KE  Summers AO 《Biochemistry》2002,41(32):10287-10296
The bacterial plasmid-encoded organomercurial lyase, MerB (EC 4.99.1.2), catalyzes the protonolysis of organomercury compounds yielding Hg(II) and the corresponding protonated hydrocarbon. A small, soluble protein with no known homologues, MerB is widely distributed among eubacteria in three phylogenetically distinct subfamilies whose most prominent motif includes three conserved cysteine residues. We found that the 212-residue MerB encoded by plasmid R831b is a cytosolic enzyme, consistent with its high thiol requirement in vitro. MerB is inhibited by the nonphysiological dithiol DTT but uses the physiological thiols, glutathione and cysteine, equally well. Highly conserved Cys96 and Cys159 are essential for activity, whereas weakly conserved Cys160 is not. Proteins mutant in highly conserved Cys117 are insoluble. All MerB cysteines are DTNB-reactive in native and denatured states except Cys117, which fails to react with DTNB in the native form, suggesting it is buried. Mass spectrometric analysis of trypsin fragments of reduced proteins treated with N-ethylmaleimide or iodoacetamide revealed that all cysteines form covalent adducts and remain covalently modifiable even when exposed to 1:1 PHMB prior to treatment with NEM or IAM. Stable PHMB adducts were also observed on all cysteines in mutant proteins, suggesting rapid exchange of PHMB among the remaining protein thiols. However, PHMB exposure of reduced wild-type MerB yielded only Hg adducts on the Cys159/Cys160 peptide, suggesting a trapped reaction intermediate. Using HPLC to follow release of benzoic acid from PHMB, we confirmed that fully reduced wild-type MerB and mutant C160S can carry out a single protonolysis without exogenous thiols. On the basis of the foregoing we refine the previously proposed S(E)2 mechanism for protonolysis by MerB.  相似文献   

15.
An approach is described for the simultaneous identification and quantitation of oxidant-sensitive cysteine thiols in a complex protein mixture using a thiol-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, USA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. Applying this approach, we have identified cysteine thiols of proteins in a rabbit heart membrane fraction that are sensitive to a high concentration of hydrogen peroxide. Previously known and some novel proteins with oxidant-sensitive cysteines were identified. Of the many protein thiols labeled by the ICAT, only relatively few were oxidized more than 50% despite the high concentration of oxidant used, indicating that oxidant-sensitive thiols are relatively rare, and denoting their specificity and potential functional relevance.  相似文献   

16.
Abstract

Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2′ azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by β-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

17.
Previous studies proposed that N-ethylmaleimide (NEM) alkylates 3 classes of thiols on skeletal muscle ryanodine receptors (RyRs) producing 3 phases of channel modification, as function of time and concentration. NEM (5 mm) decreased, increased, and then decreased the open probability (P(o)) of the channel by thiol alkylation, a reaction not reversed by reducing agents. We now show that low NEM concentrations (20-200 microm) elicit Ca(2+) release from sarcoplasmic reticulum (SR) vesicles, but contrary to expectations, the effect was fully reversed by reducing agents or by washing SR vesicles. In bilayers, NEM (0.2 mm) increased P(o) of RyRs within seconds when added to the cis (not trans) side, and dithiothreitol (DTT; 1 mm) decreased P(o) in seconds. High (5 mm) NEM concentrations elicited SR Ca(2+) release that was not reversed by DTT, as expected for an alkylation reaction. A non-sulfhydryl reagent structurally related to NEM, N-ethylsuccinimide (0.1-0.5 mm), also elicited SR Ca(2+) release that was not reversed by DTT (1 mm). Other alkylating agents elicited SR Ca(2+) release, which was fully (N-methylmaleimide) or partially (iodoacetic acid) reversed by DTT and inhibited by ruthenium red. Nitric oxide (NO) donors at concentrations that did not activate RyRs inhibited NEM-induced Ca(2+) release, most likely by an interaction of NO with NEM rather than an inactivation of RyRs by NO. Thus, at low concentrations, NEM does not act as a selective thiol reagent and activates RyRs without alkylating critical thiols indicating that the multiple phases of ryanodine binding are unrelated to RyR activity or to NEM alkylation of RyRs.  相似文献   

18.
D(-)beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains essential thiol and carboxyl groups. A tryptic BDH peptide labeled at an essential thiol with [3H]N-ethylmaleimide (NEM), and another tryptic peptide labeled at an essential carboxyl with N,N'-dicyclohexyl [14C]carbodiimide (DCCD), were isolated and sequenced. The peptide labeled with [3H]NEM had the sequence Met.Glu.Ser.Tyr.Cys*.Thr.Ser. Gly.Ser.Thr.Asp.Thr.Ser.Pro.Val.Ile.Lys. The label was at Cys. The same peptide was isolated from tryptic digests of BDH labeled at its nucleotide-binding site with the photoaffinity labeling reagent, arylazido- -[3-3H] alanyl-NAD. These results suggest that the essential thiol of BDH is located at its nucleotide-binding site, and agree with our previous observation that NAD and NADH protect BDH against inhibition by thiol modifiers. The [14C]DCCD-labeled peptide had the sequence Glu.Val.Ala.Glu*.Val. Asn. Leu.Trp.Gly.Thr.Val.Arg. DCCD appeared to modify the glutamic acid residue marked by an asterisk. Sequence analogies between these peptides and other proteins have been discussed.  相似文献   

19.
Oxidation of the skeletal muscle Ca(2+) release channel (RYR1) increases its activity, produces intersubunit disulfide bonds, and blocks its interaction with calmodulin. Conversely, bound calmodulin protects RYR1 from the effects of oxidants (Zhang, J.-Z., Wu, Y., Williams, B. Y., Rodney, G., Mandel, F., Strasburg, G. M., and Hamilton, S. L. (1999) Am. J. Physiol. 276, Cell Physiol. C46-C53). In addition, calmodulin protects RYR1 from trypsin cleavage at amino acids 3630 and 3637 (Moore, C. P., Rodney, G., Zhang, J.-Z., Santacruz-Toloza, L., Strasburg, G. M., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). The sequence between these two tryptic sites is AVVACFR. Alkylation of RYR1 with N-ethylmaleimide (NEM) blocks both (35)S-apocalmodulin binding and oxidation-induced intersubunit cross-linking. In the current work, we demonstrate that both cysteines needed for the oxidation-induced intersubunit cross-link are protected from alkylation with N-ethylmaleimide by bound calmodulin. We also show, using N-terminal amino acid sequencing together with analysis of the distribution of [(3)H]NEM labeling with each sequencing cycle, that cysteine 3635 of RYR1 is rapidly labeled by NEM and that this labeling is blocked by bound calmodulin. We propose that cysteine 3635 is located at an intersubunit contact site that is close to or within a calmodulin binding site. These findings suggest that calmodulin and oxidation modulate RYR1 activity by regulating intersubunit interactions in a mutually exclusive manner and that these interactions involve cysteine 3635.  相似文献   

20.
Loss of protein thiols is a key feature associated with the onset of age-related nuclear cataract (ARNC), however, little is known about the specific sites of oxidation of the crystallins. We investigated cysteine residues in ARNC lenses and compared them with age-matched normal lenses. Proteomic analysis of tryptic digests revealed ten cysteine residues in older normal lenses that showed no significant oxidation compared to foetal counterparts (Cys 170 in betaA1/3-crystallin, Cys 32 in betaA4-crystallin, Cys 79 in betaB1-crystallin, Cys 22, Cys 78/79, C153 in gammaC-crystallin and Cys 22, Cys 24 and Cys 26 in gammaS-crystallin). Although these thiols were not oxidised in normal lenses past the 6th decade, they were present largely as disulphides in the ARNC lenses. By contrast, two cysteine residues, Cys 41 in gammaC-crystallin and Cys 18 in gammaD-crystallin, were not oxidised, even in advanced ARNC lenses. These cysteines are buried deep within the protein and any unfolding associated with cataract must be insufficient to expose them to the oxidative environment present in the centre of advanced ARNC lenses. The vast majority of the loss of protein thiol observed in such lenses is due to disulphide bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号