首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Panax ginseng root and cell cultures were shown to biotransform paeonol (1) into its 2-O-β-d-glucopyranoside (2). P. ginseng root cultures were also able to biotransform paeonol (1) into its 2-O-β-d-xylopyranoside (3), 2-O-β-d-glucopyranosyl(1 → 6)-β-d-glucopyranoside (4) and 2-O-β-d-xylopyranosyl(1 → 6)-β-d-glucopyranoside (5), and its demethylated derivate, 2′,4′-dihydroxyacetophenone (6). Compounds 3 and 4 are new glycosides. It is the first example that the administrated compound was converted into its xylopyranoside by plant biotransformation.  相似文献   

2.
Andr  s Lipt  k  Lajos Szab    J  nos Ker  kgy  rt    J  nos Harangi  P  l N  n  si

Helmut Duddeck 《Carbohydrate research》1986,150(1):187-197

The title tetrasacharide having the structure 3-O-Me-β- -Xylp-(1→4)-- -Rhap-(1→4)-- -Rhap-(1→2)- -Rhap was obtained by reaction of the -acetobromo derivative of 4-O-(3-O-methyl-β- -xylopyranosyl)- -rhamnopyranose and benzyl 3,4-di-O-benzyl-2-O-(2,3-O-isopropylidene-- -rhamnopyranosyl)-- -rhamnopyranoside, followed by removal of the protecting groups. The synthesised compounds were characterised on the basis of n.m.r. data.  相似文献   

3.
The structure of the K40 antigenic capsular polysaccharide (K40 antigen) of E. coli O8:K40:H9 was elucidated by determination of the composition, 1H- and 13C-n.m.r. spectroscopy, periodate oxidation and Smith degradation, and methylation analysis. The K40 polysaccharide consists of [(O-β- -glucopyranosyluronic acid)-(1→4)-O-(2-acetamido-2-deoxy-- -glucopyranosyl)-(1→6)-O-(2-acetamido-2-deoxy-- -glucopyranosyl)-(1→4)] repeating units. All of the glucuronic acid residues are substituted amidically with -serine.  相似文献   

4.
Chemical studies were carried out on the root of Glycyrrhiza pallidiflora (Leguminosae), a licorice of no medicinal or commercial value. Two isoflavone glycosides, wistin and ononin, were isolated as major constituents from the methanol extract. A series of chromatographic separations of the acetone extract yielded isoflavone aglycones (afromosin, 2′,7-dihydroxy-4′-methoxyisoflavone and formononetin), flavanones (liquiritigenin and 4′,7-dihydroxy-6,8-diprenylflavanone), an isoflavan [(-)-vestitol], a pterocarpan [(-)-medicarpin], chalcones (echinatin and isoliquiritigenin), dibenzoylmethanes (licodione and 2′-O-methyl-licodione), a flavone (4′,7-dihydroxyflavone), a 3-arylcoumarin (2′-7-dihydroxy-4′-methoxy-3-arylcoumarin), and a new isoflav-3-ene (2′-7-dihydroxy-4′-methoxyisoflav-3-ene). The co-occurrence of the retrochalcone echinatin and the biogenetically related licodione and 2′-O-methyl-licodione is of particular interest, and suggests that this species is closely related to G. echinata and G. inflata. The biogenesis of the retrochalcone is also discussed in relation to its significance in the chemotaxonomy of sects Echinatae and Bucharicae of the genus Glycyrrhiza.  相似文献   

5.
Chalconoid and stilbenoid glycosides from Guibourtia tessmanii   总被引:2,自引:0,他引:2  
Phytochemical studies on the stem bark of Guibourtia tessmanii yielded a dihydrochalcone glucoside, 2′,4-dihydroxy-4′-methoxy-6′-O-β-glucopyranoside dihydrochalcone and a new stilbene glycoside, 3,5-dimethoxy-4′-O-(β-rhamnopyranosyl-(1→6)-β- glucopyranoside) stilbene besides the known pterostilbene. Their structures were established on the basis of one and two dimensional NMR spectroscopic techniques, FABMS and chemical evidence.  相似文献   

6.
The reaction of benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-β-lactoside with 1,11-ditosyloxy-3,6,9-trioxaundecane gave benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-3,2′-O--(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (2, 47%). Acid hydrolysis of 2 and condensation of the product with 1,14-ditosyloxy-3,6,9,12-tetra-oxatetradecane afforded benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-(3,6,9,12-tetraoxa-tetradecane-1,14-diyl)-3,2′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (29%). Similarly, the reaction of benzyl 2,6,2′,4′,6′-penta-O-benzyl-β-lactoside with Ts[OCH2CH2]4OTs gave benzyl 2,6,2′,4′,6′-penta-O-benzyl-3,3′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (78%). 1H-N.m.r. spectroscopy has been used to study the formation of host-guest complexes with some of these macrocyclic compounds and benzyl ammonium thiocyanate.  相似文献   

7.
Biotransformation of the pentahydroxy-flavonoid natural product, quercetin, by Beauveria bassiana ATCC 7159 afforded a new derivative, quercetin-4'-O-methyl-7-O-β-D-glucopyranoside, in 87% isolated yield suggesting that glucosylation of the substrate occurred with high selectivity at C-7-OH out of the five hydroxyl groups. Most of the product was isolated from the mycelium and the filtrate of the culture medium did not show any catalytic activity. The mycelium is capable of performing this biotransformation when suspended in buffers of pH 2.1 and 7.2, suggesting that intracellular enzymes are involved and that they are active at a wide range of extracellular pH.  相似文献   

8.
β-Glycosides of 2-acetamido-2-deoxy- -glucopyranose were synthesized, using either 7-methoxycarbonyl-3,6-dioxa-1-heptanol or 8-azido-3,6-dioxa-1-octanol. Selective β-lactosylation of 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl-trichloroacetimidate, followed by β-galactosylation of the secondary hydroxyl group with O-(2,3,4,6-tetra-O-acetyl-- -galactopyranosyl)trichloroacetimidate, catalytic hydrogenolysis, and O-deacetylation, gave 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)β- -glucopyranoside. Selective β-lactosylation of 8-azido-3,6-dioxaocytl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl bromide in the presence of silver triflate, followed by condensation with 2,3,4,6-tetra-O-acetyl-- -galactopyranosyl bromide in the presence of silver triflate, catalytic hdyrogenolysis, and O-deacetylation, gave 8-azido-3,6-dioxaoctyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)-β- glucopyranoside.  相似文献   

9.
Five apomictic taxa from the Hieracium rohacsense group were studied for their phenolic constituent composition. The following substances represent dominant compounds in the leaves: chlorogenic acid, 3,5-dicaffeoylquinic acid, luteolin 7-O-β- -glucopyranoside, luteolin 4′-O-β- -glucuronopyranoside and apigenin 4′-O-β- -glucuronopyranoside. Within the group only quantitative differences were found, luteolin 7-O-glucoside being the most important chemotaxonomic marker. Each taxon has its own specific quantitative pattern, invariable within the taxon. Based on these characteristic profiles, H. rohacsense can be distinguished from a closely related and still undescribed taxon from Mt. Pip Ivan. The proportion of luteolin 7-O-glucoside to apigenin 4′-O-glucuronoside also clearly separates the individuals of two morphologically close species—H. ratezaticum and H. pseudocaesium, which corresponds to a few slight but recognisable morphological and phenological characteristics. The ontogenetic stage of leaf development and seasonal variation are also important factors, which must be taken into consideration, as the quantity of the substances changes during leaf ontogeny and with season.  相似文献   

10.
This study investigates the pro-oxidant activity of 3′- and 4′-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3′- and 4′-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3′- and 4′-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3′- and 4′-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-14C]-3′- and 4′-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-14C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.  相似文献   

11.
Two iridoid glucosides, 8-epi-grandifloric acid and 3′-O-β-glucopyranosyl-stilbericoside, were isolated from the aerial part of Thunbergia laurifolia along with seven known compounds, benzyl β-glucopyranoside, benzyl β-(2′-O-β-glucopyranosyl) glucopyranoside, grandifloric acid, (E)-2-hexenyl β-glucopyranoside, hexanol β-glucopyranoside, 6-C-glucopyranosylapigenin and 6,8-di-C-glucopyranosylapigenin. Strucural elucidation was based on the analyses of spectroscopic data.  相似文献   

12.
Three main saponins were isolated from the seeds of Albizzia lucida. Their structures were established by spectral analyses and chemical and enzymatic transformations as 3-O-[β- -xylopyranosyl(1→2)-- -arabinopyranosyl (1→6)] [β- -glucopyranosyl (1→2)] β- -glucopyranosyl echinocystic acid; 3-O-[- -arabinopyranosyl (1→6)][β- -glucopyranosyl (1→2)]-β- -glucopyranosyl echinocystic acid and 3-O-[β- -xylopyranosyl (1→2)-β- -fucopyranosyl (1→6)-2-acetamido-2-deoxy-β- -glucopyranosyl echinocystic acid, characterized as its methyl ester.  相似文献   

13.
Addition of iodine and methanol to N6,N6-dibenzoyl-9(2,3-O-carbonyl-5-deoxy-β-d-erythro-pent-4-enofuranosyl)adenine (4) selectively gives N6,N6-dibenzoyl-2′,3′-O-carbonyl-5′-deoxy-5′-iodo-4′-methoxyadenosine (5). Compound 5 can be converted into 4′-methoxyadenosine via hydrolysis of the carbonate followed by benzoylation, displacement of the 5′-iodo function by benzoate ion, and hydrolysis with ammonia. Configurational assignments are based upon comparisons of 1H- and 13C-n.m.r. spectra with those of previously characterised analogues in the uracil series and by borate electrophoresis. Intermediates in the above scheme have also been converted into 5′-amino-5′-deoxy-4′-methoxyadenosine, 4′-methoxy-5′-O-sulfamoyladenosine, and ethyl 4′-methoxyadenosine-5′-carboxylate, each of which is a 4′-methoxy analogue of biologically active derivatives of adenosine.  相似文献   

14.
Yi Yang-Hua 《Phytochemistry》1991,30(12):4179-4181
A new triterpenoid, esculentagenin, and its glycoside, esculentoside M, were isolated from the roots of Phytolacca esculenta and characterized as 11-oxo-3-O-methyloleanata-12-en-2β,3β,23-trihydroxy-28-oic acid and 3-O-[β - -glucopyranosyl (1→4)-β- -Xylopyranosyl]-28-O-β- -glucopyranosyl-11-oxo-30-methyloleanate-12-en-2β,3β,23-trihydroxy-28-oic acid by spectral and chemical evidence.  相似文献   

15.
Synthesis and antibacterial activity of novel neamine derivatives   总被引:1,自引:0,他引:1  
Synthesis and activity of derivatives at the O5 or O6 positions of 1-N-((S)-4-amino-2-hydroxybutyryl)-3′,4′-dideoxyneamine, which is the neamine moiety of arbekacin, were reported. Among these results, the 5-O-aminoethylaminocarbonyl derivative showed effective activity against Staphylococcus aureus expressing a bifunctional aminoglycoside-modifying enzyme AAC(6′)-APH(2″).  相似文献   

16.
Three new cycloartane glycosides, trigonoside I, II and III, and the known astragalosides I and II were isolated from the roots of Astragalus trigonus. The structures of the new glycosides were totally elucidated by high field (600 MHz) NMR analyses as cycloastragenol-6-O-β-xylopyranoside, cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-xylopyranosyl]-6-O-β- d-xylopyranoside and cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-(3-O-acetyl)-xylopyranosyl]-6-O-β-d-xylopyranoside.  相似文献   

17.
This report describes a specific and highly sensitive gas chromatography–mass spectrometry (GC–MS) assay for the analysis of industrially produced 2-hydroxypropyl-γ-cyclodextrin, a heterogeneous mixture of homologues and isomers, in plasma of cynomolgus monkeys. Instead of analyzing the polysaccharide mixture as a whole, in a first step the HP-γ-cyclodextrin mixture, together with the internal standard (2,6-di-O-methyl-β-cyclodextrin), was deuteromethylated, and in a second step hydrolyzed with hydrochloric acid to the respective monosaccharides. The resulting reaction mixture was trimethylsilylated to 1,4-bis(O-trimethylsilyl)-2,3-bis-O-deuteromethyl-6-O-2′-deuteromethoxypropylglucose (representative for HP-γ-CD) and 1,4-bis-(O-trimethylsilyl)-bis-2,6-O-methyl-3-O-deuteromethylglucose (representative for the internal standard), respectively, and analyzed by GC–MS. The limit of quantification of this assay was 20 nmol/l.  相似文献   

18.
Chemical studies on the constituents of Eranthis cilicica led to isolation of ten chromone derivatives, two of which were previously known. Comprehensive spectroscopic analysis, including extensive 1D and 2D NMR data, and the results of enzymatic hydrolysis allowed the chemical structures of the compounds to be assigned as 8,11-dihydro-5-hydroxy-2,9-dihydroxymethyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 5,7-dihydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 5,7-dihydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 9-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-8,11-dihydro-5,9-dihydroxy-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 8,11-dihydro-5,9-dihydroxy-9-hydroxymethyl-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, and 7-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-4-hydroxy-5H-furo[3,2-g][1]benzopyran-5-one, respectively. The isolated compounds were evaluated for their antioxidant activity.  相似文献   

19.
Suspension cultures of Vitis vinifera were found to produce catechins and stilbenes. When cells were grown in a medium inducing polyphenol synthesis, (−)-epicatechin-3-O-gallate, dimeric procyanidin B-2 3′-O-gallate and two resveratrol diglucosides were isolated, together with a new natural compound that was identified as cis-resveratrol-3,4′-O-β-diglucoside by spectroscopical methods.  相似文献   

20.
The seeds of Otoba parvifolia contain three novel compounds apparently derived from homogentisic acid, rel-(1′R,5′R)-2-(1′-farnesyl-5′-hydroxy-2′-oxocyclohex-3′-en-1′-yl)-acetic acid and its acetate as well as rel-(1′R,4′S,5′R)-2-(1′-farnesyl-4′,5′-dihydroxy-2′-oxocyclohexan-1′-yl)-acetic acid δ-lactone. The structure of an additional isolate, previously described as 2-(1′-farnesyl-2′-hydroxy-5′-oxocyclohex-3′-en-1′-yl)-acetic acid γ-lactone was revised to rel-(1′R,5′R)-2-(1′-farnesyl-5′-hydroxy-2′-oxocyclohex-3′-en-1′-yl)-acetic acid δ-lactone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号