共查询到20条相似文献,搜索用时 12 毫秒
1.
Elizabeth R. Dumont 《Proceedings. Biological sciences / The Royal Society》2010,277(1691):2193-2198
The skeletons of birds are universally described as lightweight as a result of selection for minimizing the energy required for flight. From a functional perspective, the weight (mass) of an animal relative to its lift-generating surfaces is a key determinant of the metabolic cost of flight. The evolution of birds has been characterized by many weight-saving adaptations that are reflected in bone shape, many of which strengthen and stiffen the skeleton. Although largely unstudied in birds, the material properties of bone tissue can also contribute to bone strength and stiffness. In this study, I calculated the density of the cranium, humerus and femur in passerine birds, rodents and bats by measuring bone mass and volume using helium displacement. I found that, on average, these bones are densest in birds, followed closely by bats. As bone density increases, so do bone stiffness and strength. Both of these optimization criteria are used in the design of strong and stiff, but lightweight, manmade airframes. By analogy, increased bone density in birds and bats may reflect adaptations for maximizing bone strength and stiffness while minimizing bone mass and volume. These data suggest that both bone shape and the material properties of bone tissue have played important roles in the evolution of flight. They also reconcile the conundrum of how bird skeletons can appear to be thin and delicate, yet contribute just as much to total body mass as do the skeletons of terrestrial mammals. 相似文献
2.
Justyna Słowiak Tomasz Szczygielski Michał Ginter Łucja Fostowicz-Frelik 《Palaeontology》2020,63(4):579-599
Duck-billed dinosaurs (Hadrosauridae) were the most common ornithopods of the Late Cretaceous. Second only to sauropods and in many cases exceeding the sizes of the largest land mammals (such as indricotheres or proboscideans), they are among the largest terrestrial herbivores to have walked the Earth. Despite their gigantic size, diversity and abundance, their growth strategies remain poorly understood. Here, we examine the bone microstructure of several Mongolian hadrosauroids of varied adult sizes. The small and middle-sized species have lines of arrested growth (LAGs). On the other hand, one of the largest duck-billed dinosaurs, Saurolophus angustirostris, shows uninterrupted growth, comparable with other big hadrosaurs for which the lack of cyclical growth arrests was interpreted as a result of living in the polar region. Since both of the studied taxa inhabited warmer, continental, monsoon-influenced environments of the Late Cretaceous Mongolia, we propose that the absence of LAGs is not a climatic-driven condition but rather connected with the animal's size (i.e. ontogeny). Our results show that, like sauropods, hadrosaurs changed their growth dynamics from cyclical to continuous during their evolution, which made it possible for them to achieve comparable body sizes. 相似文献
3.
A synoptic review of the discoveries and studies of Chinese Mesozoic birds is provided in this paper.40Ar/39Ar dating of several bird-bearing deposits in the Jehol Group has established a geochronological framework for the study of the early avian radiation.Chinese Mesozoic birds had lasted for at least 11 Ma during about 131 Ma and 120 Ma (Barremian to Aptian)of the middle and late Early Cretaceous,respectively.In order to further evaluate the change of the avian diversity in the Jehol Biota,six new orders and families are erected based on known genera and species,which brings the total number of orders of Chinese Mesozoic birds to 15 and highlights a remarkable radiation ever since the first appearante of birds in the Late Jurassic.Chinese Early Cretaceous birds had experienced a significant differentiation in morphology,flight,diet and habitat.Further examination of the foot of Jeholornis suggests this bird might not have possessed a fully reversed hallux.However,the attachment of metatarsal Ⅰ to the medial side of metatarsal Ⅱ does not preclude trunk climbing,a pre-adaptation for well developed perching life of early birds.Arboreality had proved to be a key adaptation in the origin and early evolution of bird flight,and the adaptation to lakeshore environment had played an equally important role in the origin of omithurine birds and their near-modern flight skill.Many Chinese Early Cretaceous birds had preserved the direct evidence of their diet,showing that the most primitive birds were probably mainly insectivorous and that specialized herbivorous or carnivorous (e.g.,piscivorous)dietary adaptation had appeared only in later advanced forms.The only known Early Cretaceous bird embryo fossil has shown that precocial birds had occurred prior to altricial birds in avian history,and the size of the embryo and other analysis indicate it probably had a short incubation period.Leg feathers probably have a wide range of distribution in early birds,further suggesting that leg feathers had played a key role in the beginning stage of the flight of birds.Finally,the Early Cretaceous avian radiation can be better understood against the background of their unique ecosystem.The advantage of birds in the competitions with other vertebrate groups such as pterosaurs had probably not only resulted in the rapid differentiation and radiation of birds but also the worldwide spreading of pterosaurs and other vertebrates from East Asia in the Early Cretaceous. 相似文献
4.
Zelenitsky DK Therrien F Ridgely RC McGee AR Witmer LM 《Proceedings. Biological sciences / The Royal Society》2011,278(1725):3625-3634
Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction. 相似文献
5.
A developmental constraint on the fledging time of birds 总被引:1,自引:0,他引:1
DAVID R. CARRIER JASON AURIEMMA 《Biological journal of the Linnean Society. Linnean Society of London》1992,47(1):61-77
We examined the hypothesis that the rate of bone growth limits the minimum fledging time of birds. Previous observations in California gulls indicate that linear growth of wing bones may be the rate limiting factor in wing development. If bone growth is rate limiting, then birds with relatively long bones for their size could be expected to have longer fledging periods than birds with relatively short bones. We tested this by comparing the length of wing bones, relative to body mass, to the relative length of fledging periods among 25 families. The results support the hypothesis. A strong correlation exists between relative fledging period and relative bone length. Species which have relatively long bones for their body size tend to take longer to fly. In contrast, parameters that influence flight style and performance, such as size of the pectoralis muscle and wing loading, show little or no correlation with fledging time. The analysis also indicates that, when altricial and precocial species are considered together, bone length is more highly correlated with fledging time than is body mass or rate of increase in body mass during growth. These observations suggest that linear growth of bones does limit the growth of avian wings and that it is one of the factors that influences the fledging time of birds. 相似文献
6.
Brian C. Weeks Madeleine Klemz Haruka Wada Rachel Darling Tiffany Dias Bruce K. O'Brien Charlotte M. Probst Mingyu Zhang Marketa Zimova 《Biology letters》2022,18(12)
As temperatures increase, there is growing evidence that species across much of the tree of life are getting smaller. These climate change-driven size reductions are often interpreted as a temporal analogue of the observation that individuals within a species tend to be smaller in the warmer parts of the species'' range. For ectotherms, there has been a broad effort to understand the role of developmental plasticity in temperature–size relationships, but in endotherms, this mechanism has received relatively little attention in favour of selection-based explanations. We review the evidence for a role of developmental plasticity in warming-driven size reductions in birds and highlight insulin-like growth factors as a potential mechanism underlying plastic responses to temperature in endotherms. We find that, as with ectotherms, changes in temperature during development can result in shifts in body size in birds, with size reductions associated with warmer temperatures being the most frequent association. This suggests developmental plasticity may be an important, but largely overlooked, mechanism underlying warming-driven size reductions in endotherms. Plasticity and natural selection have very different constraining forces, thus understanding the mechanism linking temperature and body size in endotherms has broad implications for predicting future impacts of climate change on biodiversity. 相似文献
7.
Molecular development of fibular reduction in birds and its evolution from dinosaurs 总被引:1,自引:0,他引:1 下载免费PDF全文
João Francisco Botelho Daniel Smith‐Paredes Sergio Soto‐Acuña Jingmai O'Connor Verónica Palma Alexander O. Vargas 《Evolution; international journal of organic evolution》2016,70(3):543-554
Birds have a distally reduced, splinter‐like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid‐related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis‐like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity. 相似文献
8.
Evolution of parental incubation behaviour in dinosaurs cannot be inferred from clutch mass in birds
A recent study proposed that incubation behaviour (i.e. type of parental care) in theropod dinosaurs can be inferred from an allometric analysis of clutch volume in extant birds. However, the study in question failed to account for factors known to affect egg and clutch size in living bird species. A new scaling analysis of avian clutch mass demonstrates that type of parental care cannot be distinguished by conventional allometry because of the confounding effects of phylogeny and hatchling maturity. Precociality of young but not paternal care in the theropod ancestors of birds is consistent with the available data. 相似文献
9.
The differences in the eyelids microstructure and the conjunctiva‐associated lymphoid tissue between selected ornamental and wild birds as a result of adaptation to their habitat 下载免费PDF全文
Joanna E. Klećkowska‐Nawrot Karolina Goździewska‐Harłajczuk Dariusz Łupicki Krzysztof Marycz Tomasz Nawara Karolina Barszcz Artur Kowalczyk Joanna Rosenberger Ewa Łukaszewicz 《Acta zoologica》2018,99(4):367-394
The aim of the study was to describe the morphology of the upper, lower and third eyelid and characterize the organized lymphoid follicles and diffuse lymphocytes from ornamental and wild birds. The goal of these examinations was also to identify avian conjunctiva‐associated lymphoid tissue (CALT) and lymphoid tissue that contained specialized high endothelial venules. The upper, lower and third eyelid from 30 species of ornamental and wild birds representing 21 families were examined under light microscopy and using scanning electron microscopy. The third eyelid in all of the examined birds was composed of a free margin, which was divided into two parts. The largest tarsal plate of the third eyelid was observed in the greater rhea (Rheimorphae), the white‐tailed eagle and steppe eagle (Accipitrimorphae) and was approximately 13–15 mm wide and 9–11 mm long, respectively. In all of the examined birds, the CALT was associated with a rich network of small vessels. In addition, the presence of characteristic high endothelial venules and roundish bright endothelial cells was confirmed in the upper and lower eyelids or only in the lower eyelid (Phoenicopterimorphae, Procellariimorphae and Strigimorphae). 相似文献
10.
Lewisuchus admixtus is a basal dinosauriform coming from Late Triassic outcrops of NW Argentina. Although this taxon was recently anatomically restudied, histological data is still wanting. The microstructure of the long bones (femur and two tibie) reveals a relatively fast rate of growth, comparable with that seen in other basal Dinosauriformes and basal dinosaurs. Cortical bone is comprised of fibro-lamellar complex in one femur and tibia, but parallel-fibered matrix are observed in the other tibia. The secondary remodelling of bone is poor and there is not growth marks. The vascularization is relatively dense, longitudinal, laminar and reticular. There are some features that indicate slowdown of the growth at late age of the specimens. The fast growth of L. admixtus implies a relatively high metabolic rate. This is probably related with environmental conditions. 相似文献
11.
《Current biology : CB》2021,31(16):3687-3693.e5
12.
Conflicting theories have been proposed to explain variation in relative brain size across the animal kingdom. Ecological theories argue that the cognitive demands of seasonal or unpredictable environments have selected for increases in relative brain size, whereas the ‘social brain hypothesis’ argues that social complexity is the primary driver of brain size evolution. Here, we use a comparative approach to test the relative importance of ecology (diet, foraging niche and migration), sociality (social bond, cooperative breeding and territoriality) and developmental mode in shaping brain size across 1886 bird species. Across all birds, we find a highly significant effect of developmental mode and foraging niche on brain size, suggesting that developmental constraints and selection for complex motor skills whilst foraging generally imposes important selection on brain size in birds. We also find effects of social bonding and territoriality on brain size, but the direction of these effects do not support the social brain hypothesis. At the same time, we find extensive heterogeneity among major avian clades in the relative importance of different variables, implying that the significance of particular ecological and social factors for driving brain size evolution is often clade- and context-specific. Overall, our results reveal the important and complex ways in which ecological and social selection pressures and developmental constraints shape brain size evolution across birds. 相似文献
13.
Periosteal bone histology expresses its rate of deposition. This fundamental relationship between bone structure and growth dynamics, first assumed by Amprino many decades ago, was quantified in preliminary studies, but never statistically tested. Moreover, the precise typological characters of bone tissue linked to growth rate remained poorly known. Here, we present the first statistical analysis of 'Amprino's rule', measured on comprehensive growth series of the mallard, Anas platyrhynchos. Growth rates were assessed by fluorescent labelling. Bone typology was described according to Ricqlès' typological classification. Results show that the presence and proportion of primary osteons, two consequences of bone initial porosity at the time of its deposit, are strongly related to bone growth rate. However, no significant relationship between primary osteons orientation and bone growth rate could be detected, at least for osteonal orientations (longitudinal, laminar and reticular) and growth rates values observed in mallard long bones. These results suggest that Amprino's rule holds for some major typological characters of primary compact bone tissues (i.e. primary osteons presence and proportion). However, it is irrelevant to some other characters (i.e. osteonal orientation), the meaning of which remains to be discovered. 相似文献
14.
Abstract: We describe bones from the Late Cretaceous of Alberta – including bones of large dinosaurs, a femur from the aquatic reptile Champsosaurus, and a dentary from the marsupial Eodelphis– that bear tooth marks made by animals with opposing pairs of teeth. Of the animals known from the Late Cretaceous of North America, only mammals are capable of making such tooth marks. In particular, multituberculates, which have paired upper and lower incisors, are the most likely candidates for the makers of these traces. The traces described here represent the oldest known mammalian tooth marks. Although it is possible that some of these tooth marks represent feeding traces, the tooth marks often penetrate deep into the dense cortices of the bone. This raises the possibility that, much as extant mammals gnaw bone and antler, some Cretaceous mammals may have consumed the bones of dinosaurs and other vertebrates as a source of minerals. However, none of the tooth marks described here resemble the extensive gnaw traces produced by Cenozoic multituberculates or rodents. This suggests that specialized gnawing forms may have been rare or absent in the Late Cretaceous of North America. 相似文献
15.
Doleserpeton annectens is a small‐bodied early Permian amphibamiform, a clade of temnospondyl amphibians regarded by many workers to be on the lissamphibian stem. Most studies of this taxon have focused solely on its anatomy, but further exploration of other aspects of its paleobiology, such as developmental patterns, is critical for a better understanding of the early evolutionary history of lissamphibians. Here, we present a histological analysis of growth patterns in D. annectens that utilizes 60 femora, the largest sample size for any Paleozoic tetrapod. We identified pervasive pairs of closely spaced lines of arrested growth (LAGs), a pattern that indicates a marked degree of climatic harshness and that would result in two cessations of growth within a presumed single year. We documented a wide degree of variation compared to previous temnospondyl skeletochronological studies, reflected in the poor correlation between size and inferred age, but this observation aligns closely with patterns observed in extant lissamphibians. Furthermore, sensitivity analyses conducted by subsampling our dataset at more typical sample sizes for paleontological studies produced a wide range of results. This includes biologically improbable results and exceptionally well‐fit curves that demonstrate that low sample size can produce potentially misleading artifacts. We propose that the weak correlation between age and size represents developmental plasticity in D. annectens that typifies extant lissamphibians. Detection of these patterns is likely only possible with large sample sizes in extinct taxa, and low sample sizes can produce false, misleading results that warrant caution in drawing paleobiological interpretations from such samples. 相似文献
16.
Bone vascular canals occur irregularly in tetrapods; however, the reason why a species has or lacks bone canals remains poorly understood. Basically, this feature could depend on phylogenetic history, or result from diverse causes, especially cortical accretion rate. The Varanidae, a monophyletic clade that includes species with impressive size differences but similar morphologies, is an excellent model for this question. Cortical vascularization was studied in 20 monitor species, on three bones (femur, fibula, and tibia) that differ in their shaft diameters, and in the absolute growth speed of their diaphyseal cortices. In all species smaller than 398 mm SVL (133-397 mm in sample), bone cortices lack vascular canals, whereas all larger species (460-1,170 mm in sample) display canals. The size 398-460 mm SVL is thus a threshold for the appearance of the canals. The distribution of vascular and avascular bone tissues among species does not precisely reflect phylogenetic relationships. When present, vascular canals always occur in the femur and tibia, but are less frequent, sparser, and thinner in the fibula. Vascular density increases linearly with specific size but decreases exponentially during individual growth. In most species, canal orientation varies between individuals and is diverse in a single section. No clear relationship exists between canal orientation and vascular density. These results suggest that: a) the occurrence and density of bone vascular canals are basically dependant on specific size, not phylogenetic relationships; b) vascular density reflects the absolute growth rates of bone cortices; c) the orientation of vascular canals is a variable feature independent of phylogeny or growth rate. 相似文献
17.
Sara Höpner 《Ichnos》2017,24(4):259-282
Bone is a substrate for bioerosion at equal rank with xylic and lithic substrates. Accordingly, borings in bone have to be identified in an analogous way to other ichnogenera coined for one type of substrate. In due course, the new ichnogenera Osteichnus n. igen. and Clavichnus n. igen. are established within the new ichnofamily Osteichnidae. Gastrochaenolites and Trypanites are here restricted to lithic substrates, and Asthenopodichnium only occurs in xylic substrates. Only with this approach, ichnotaxobases of trace fossils in bone are identical to those in other hard substrates. Cuniculichnus variabilis n. igen. n. isp. is introduced for variably shaped pits to tunnels bored into bone by beetle (arguably dermestid) larvae; its ethological character is close to a pupichnion. 相似文献
18.
Elasmosauridae were cosmopolitan Late Cretaceous plesiosaurs with conspicuous morphological diversity. Within this group, vertebral morphology is a criterion for estimating relative age in plesiosaur. On the other hand, the microstructure of plesiosaur bone is considered as indicative of ontogenetic stage. However, knowledge about ontogenetic tissue transformation in different elements of the skeleton is poorly known. Resorption and remodelling of skeletal tissues are required for development and growth, mechanical adaptation, repair and mineral homeostasis of the vertebrate skeleton. This contribution analyses different postcranial elements of a Late Cretaceous elasmosaurid from Patagonia. Characterisation of bone microstructure indicates the presence of compact bone inner organisation in an adult derived plesiosaur from the Cretaceous and that the distribution of bone specialisations depicts conspicuous variations within a single skeleton depending on the skeletal element considered. Bone compactness or degree of remodelling in elasmosaurids is not necessarily correlated with the ontogenetic age of the animal or to costal versus pelagic lifestyles. The available data are still scarce, but we propose a topic of discussion: perhaps the degree of remodelling and compactness also may be related to the activity level and increased mechanical load in different skeletal elements. 相似文献
19.
Growth patterns in brooding dinosaurs reveals the timing of sexual maturity in non-avian dinosaurs and genesis of the avian condition 下载免费PDF全文
The timing of sexual maturation in non-avian dinosaurs is not known. In extant squamates and crocodilians it occurs in conjunction with the initial slowing of growth rates as adult size is approached. In birds (living dinosaurs) on the other hand, reproductive activity begins well after somatic maturity. Here we used growth line counts and spacing in all of the known brooding non-avian dinosaurs to determine the stages of development when they perished. It was revealed that sexual maturation occurred well before full adult size was reached-the primitive reptilian condition. In this sense, the life history and physiology of non-avian dinosaurs was not like that of modern birds. Palaeobiological ramifications of these findings include the potential to deduce reproductive lifespan, fecundity and reproductive population sizes in non-avian dinosaurs, as well as aid in the identification of secondary sexual characteristics. 相似文献
20.
Undecalcified embedment of large bone specimens is often challenging. A method is presented here that is suitable for methacrylate embedment of sections of canine vertebrae while retaining the ability to localize tartrate-resistant acid phosphatase and alkaline phosphatase activity. Specimens also retained tetracycline labelling, and sectioned preparations were readily stained with routine bone procedures. A modification of the Bodian silver stain, used for examining the nerves and spinal cord in these specimens, provided a useful stain for canaliculi and cement lines in trabecular and cortical bone. This stain is advantageous when both bone and nerve tissue are of interest, as in spinal fusion studies. 相似文献