首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the mechanism of fibrin-specific plasminogen activation by staphylokinase   总被引:10,自引:0,他引:10  
The mechanism of plasminogen activation by recombinant staphylokinase was studied both in the absence and in the presence of fibrin, in purified systems, and in human plasma. Staphylokinase, like streptokinase, forms a stoichiometric complex with plasminogen that activates plasminogen following Michaelis-Menten kinetics with Km = 7.0 microM and k2 = 1.5 s-1. In purified systems, alpha 2-antiplasmin inhibits the plasminogen-staphylokinase complex with k1(app) = 2.7 +/- 0.30 x 10(6) M-1 s-1 (mean +/- S.D., n = 12), but not the plasminogen-streptokinase complex. Addition of 6-aminohexanoic acid induces a concentration-dependent reduction of k1(app) to 2.0 +/- 0.17 x 10(4) M-1 s-1 (mean +/- S.D., n = 5) at concentrations greater than or equal to 30 mM, with a 50% reduction at a 6-aminohexanoic acid concentration of 60 microM. Staphylokinase does not bind to fibrin, and fibrin stimulates the initial rate of plasminogen activation by staphylokinase only 4-fold. Staphylokinase induces a dose-dependent lysis of a 0.12-ml 125I-fibrin-labeled human plasma clot submersed in 0.5 ml of citrated human plasma; 50% lysis in 2 h is obtained with 17 nM staphylokinase and is associated with only 5% plasma fibrinogen degradation. Corresponding values for streptokinase are 68 nM and more than 90% fibrinogen degradation. In the absence of a fibrin clot, 50% fibrinogen degradation in human plasma in 2 h requires 790 nM staphylokinase, but only 4.4 nM streptokinase. These results suggest the following mechanism for relatively fibrin-specific clot lysis with staphylokinase in a plasma milieu. In plasma in the absence of fibrin, the plasminogen-staphylokinase complex is rapidly neutralized by alpha 2-antiplasmin, thus preventing systemic plasminogen activation. In the presence of fibrin, the lysine-binding sites of the plasminogen-staphylokinase complex are occupied and inhibition by alpha 2-antiplasmin is retarded, thus allowing preferential plasminogen activation at the fibrin surface.  相似文献   

2.
Activation of plasminogen by pro-urokinase. I. Mechanism   总被引:7,自引:0,他引:7  
The mechanism of the activation of plasminogen by recombinant pro-urokinase (Rec-pro-UK), obtained by expression of the human pro-urokinase gene in Escherichia coli, was investigated in purified systems. In mixtures of Rec-pro-UK and plasminogen, both active urokinase and plasmin are quickly generated. Addition of plasmin inhibitors (aprotinin or alpha 2-antiplasmin) abolishes the conversion of Rec-pro-UK to urokinase but not the activation of plasminogen to plasmin, suggesting that Rec-pro-UK activates plasminogen directly. Human plasma competitively inhibits the activation of plasminogen by pro-urokinase with a Ki of 0.2% (v/v). This explains the relative stability of Rec-pro-UK in plasma and the lack of activation of the plasma fibrinolytic system in the absence of fibrin. The competitive inhibition by plasma is abolished by the addition of CNBr-digested fibrinogen although Rec-pro-UK has no specific affinity for fibrin. These findings suggest that the fibrin specificity of the activation of plasminogen by pro-urokinase is due to neutralization by fibrin of the competitive inhibition exerted by plasma and not to fibrin-enhanced activation of plasminogen.  相似文献   

3.
The rate of 'Glu'-plasminogen activation by tissue plasminogen activator was repeatedly determined during a fibrinolytic process. The process was found to proceed via two distinct phases. The kinetics of each phase obeyed Michaelis-Menten equation: First phase; kcat about 0.17 s-1 and Km about 1 microM, second phase; kcat about 0.13 s-1 and Km about 0.06 microM. Practically identical results were obtained with one-chain as with two-chain tissue plasminogen activator. Transition from first to second phase occurred when the system had been exposed to a certain degree of plasmin digestion. Electrophoretic analysis demonstrated time correlation between the appearance of minimally degraded fibrin (X-fragments) and the transition. No such correlation was found between transition and conversion of 'Glu'-plasminogen to 'Lys'-plasminogen. The effect can result in an acceleration (up to 13-fold) of the fibrinolytic process once a slight degradation of the fibrin has taken place. In vivo, the effect described may constitute a mechanism that protects a fibrin clot from premature lysis.  相似文献   

4.
The fibrinolytic system comprises a proenzyme, plasminogen, which can be converted to the active enzyme, plasmin, which degrades fibrin. Plasminogen activation is mediated by plasminogen activators, which are classified as either tissue-type plasminogen activators (t-PA) or urokinase-type plasminogen activators (u-PA). Inhibition of the fibrinolytic system may occur at the level of the activators or at the level of generated plasmin. Plasmin has a low substrate specificity, and when circulating freely in the blood it degrades several proteins including fibrinogen, factor V, and factor VIII. Plasma does, however, contain a fast-acting plasmin inhibitor, alpha 2-antiplasmin, which inhibits free plasmin extremely rapidly but which reacts much slower with plasmin bound to fibrin. A "systemic fibrinolytic state" may, however, occur by extensive activation of plasminogen and depletion of alpha 2-antiplasmin. Clot-specific thrombolysis therefore requires plasminogen activation restricted to the vicinity of the fibrin. Two physiological plasminogen activators, t-PA and single-chain u-PA (scu-PA) induce clot-specific thrombolysis, via entirely different mechanisms, however. t-PA is relatively inactive in the absence of fibrin, but fibrin strikingly enhances the activation rate of plasminogen by t-PA. This is explained by an increased affinity of fibrin-bound t-PA for plasminogen and not by alteration of the catalytic rate constant of the enzyme. The high affinity of t-PA for plasminogen in the presence of fibrin thus allows efficient activation on the fibrin clot, while no significant plasminogen activation by t-PA occurs in plasma. scu-PA has a high affinity for plasminogen (Km = 0.3 microM) but a low catalytic rate constant (kcat = 0.02 sec-1). However, scu-PA does not activate plasminogen in plasma in the absence of a fibrin clot, owing to the presence of (a) competitive inhibitor(s). Fibrin-specific thrombolysis appears to be due to the fact that fibrin reverses the competitive inhibition. The thrombolytic efficacy and fibrin specificity of natural and recombinant t-PA has been demonstrated in animal models of pulmonary embolism, venous thrombosis, and coronary artery thrombosis. In all these studies intravenous infusion of t-PA at sufficiently high rates caused efficient thrombolysis in the absence of systemic fibrinolytic activation. The efficacy and relative fibrinogen-sparing effect of t-PA was recently confirmed in three multicenter clinical trials in patients with acute myocardial infarction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Equimolar mixtures of recombinant single chain urokinase-type plasminogen activator (rscu-PA) and a murine monoclonal antibody (MA-15C5) directed against fragment-D dimer of human cross-linked fibrin were conjugated, using the cross-linking agent N-succinimidyl 3-(2-pyridyldithio)propionate (PySSProSu). The conjugate (rscu-PA/MA-15C5), purified by immunoadsorption on a urokinase antibody and affinity chromatography on fibrin fragment-D dimer with a yield of 42 +/- 15% (mean +/- SD, n = 3), contained an average of 1.2 +/- 0.3 IgG molecules/rscu-PA molecule. On non-reduced SDS/PAGE it migrated as a main band with apparent Mr of 200,000. Specific amidolytic activities expressed/mass of u-PA were less than 250 IU/mg for rscu-PA/MA-15C5 and rscu-PA, 140,000 +/- 13,000 IU/mg and 100,000 +/- 17,000 IU/mg for their plasmin-generated two chain derivatives rtcu-PA/MA-15C5 and rtcu-PA respectively. Specific activities on fibrin plates were 100,000 +/- 24,000 IU/mg and 130,000 +/- 49,000 IU/mg for rscu-PA/MA-15C5 and rtcu-PA/MA-15C5 respectively, as compared to 180,000 +/- 15,000 IU/mg for both rscu-PA and rtcu-PA. Activation of plasminogen with rscu-PA/MA-15C5 (Km = 0.37 +/- 0.16 microM, k2 = 0.0063 +/- 0.0030 s-1 or rtcu-PA/MA-15C5 (Km = 19 +/- 3.0 microM, k2 = 2.0 +/- 0.10 s-1) in purified systems followed Michaelis-Menten kinetics with Km and k2 values comparable to those of rscu-PA and rtcu-PA. In an in vitro system composed of a 125I-fibrin-labeled whole human plasma clot immersed in citrated human plasma, dose- and time-dependent lysis was obtained; 50% lysis in 2 h required 1.4 microgram/ml of rscu-PA or 0.33 microgram/ml of rtcu-PA, but only 0.22 microgram u-PA/ml of rscu-PA/MA-15C5 or 0.15 microgram u-PA/ml of rtcu-PA/MA-15C5. Addition of purified fragment-D dimer reversed the increased fibrinolytic potency of rscu-PA/MA-15C5 in a concentration-dependent way (50% inhibition at 7.2 micrograms fragment-D dimer/ml). Thus, conjugation of u-PA moieties with the fibrin-specific antibody MA-15C5 targets the plasminogen activator to the clot, resulting in a significant increase of their fibrinolytic potencies as compared to their unconjugated counterparts: 6.4-fold for rscu-PA and 2.2-fold for rtcu-PA.  相似文献   

6.
Single-chain Mr 54,000 u-PA (scu-PA) was isolated, in the presence of aprotinin, from 3-liter batches of 60-h serum-free conditioned media obtained from subcultured (4-6th passage) human umbilical vein endothelial cells (HUVECs, approximately 1.8 x 10(9) cells). In the presence of heparin and endothelial cell growth factor, subcultured human umbilical vein endothelial cells produced u-PA proteins consisting of about 85-90% Mr 54,000 scu-PA and 10-15% two-chain Mr 54,000. The major scu-PA form was purified to homogeneity by ion-exchange chromatography on CM-Sephadex C-50, immunoadsorption on purified anti-u-PA IgG-Sepharose and affinity chromatography on p-amino-benzamidine-Agarose. Typically, about 8-10 micrograms of purified scu-PA protein (antigen/protein ratio = 1) was isolated from 3-liter batches of heparin-containing serum-free conditioned media with a yield of about 41% of the total starting u-PA antigen. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this purified u-PA protein showed a single Ag-stained band (nonreduced and reduced), with an estimated molecular weight of about 54,000, which exhibited very low fibrinolytic activity. Purified HUVEC-derived scu-PA did not incorporate 3H-labeled diisopropyl fluorophosphate. This protein did, however, exhibit very low amidolytic activity (approximately 5,000 IU/mg) on the u-PA-specific synthetic substrate pyroglu-Gly-Arg-p-nitroanilide, very low plasminogen-dependent fibrinolytic activity on 125I-labeled fibrin coated plates, and directly activated 125I-labeled plasminogen following Michaelis-Menten kinetics with high affinity, Km = 0.72 microM and low turnover number, kcat = 0.0005 s-1. Treatment with plasmin rapidly converted the HUVEC-derived scu-PA to the active two-chain Mr 54,000 u-PA form (approximately 90,000 IU/mg). Binding to fibrin clots, using antigen quantitation, indicated about 20, 10, and 90% binding for equimolar amounts of HUVEC-derived scu-PA, two-chain u-PA, and tissue plasminogen activator standards, respectively. These results indicate that subcultured HUVECs synthesize and secrete their u-PA protein as a single-chain molecule with low intrinsic amidolytic and fibrinolytic activity, high affinity for plasminogen and no specific affinity for fibrin. The role of scu-PA in endothelial cell-mediated vascular function has yet to be clearly defined.  相似文献   

7.
Rat oocytes synthesize tissue plasminogen activator (tPA) in response to stimuli which initiate meiotic maturation. Purified tPA exhibits optimal activity only in the presence of fibrin or fibrin substitutes. Because oocytes are not exposed to fibrin in situ, we investigated the possible stimulation of rat oocyte tPA activity by other endogenous factor(s). Oocytes were obtained from immature female rats which were induced to ovulate with gonadotropins. tPA activity was measured by the plasminogen-dependent cleavage of a chromogenic substrate. Measurements of kinetic parameters with Glu- or Lys-plasminogen revealed a Km for the rat oocyte enzyme of 1.3-2.1 microM compared with 23-24 microM for purified human tPA. Inclusion of the soluble fibrin substitute polylysine lowered the Km of human tPA by 30-fold (0.8 microM) but had no effect on the oocyte tPA Km. Polylysine had no significant effect on the Vmax values. The rate of plasminogen activation catalyzed by oocyte tPA was increased only 4.3-fold by fibrin while fibrin stimulated purified human tPA activity by 15.2-fold. After fractionation of oocyte extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polylysine enhanced oocyte tPA activity as seen by casein zymography. tPA activity in the conditioned medium of a rat insulinoma cell line was also not stimulated with polylysine prior to fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These data suggest that extravascular cells which elaborate tPA may produce stimulatory factor(s) which allow for full tPA activity at physiological concentrations of plasminogen in the absence of fibrin.  相似文献   

8.
A urokinase-type plasminogen activator was purified from conditioned media of several human cell cultures, but preferably from the human lung adenocarcinoma line CALU-3 (ATCC, HTB-55), using a combination of chromatography on zinc chelate-Sepharose, SP-Sephadex C-50, and Sephadex G-100. Final yields of 65-100 micrograms/liter of starting material were obtained with a 290-fold purification factor and a recovery of 30%. The purified plasminogen activator consists of a single polypeptide chain with Mr 54,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is very similar or identical to single-chain urokinase-type plasminogen activator on the basis of immunodiffusion, amino acid composition, and the lack of specific binding to fibrin. It has very low amidolytic activity on Pyroglu-Gly-Arg-rho-nitroanilide and is converted to two-chain urokinase by limited exposure to plasmin. It has a specific activity of 60,000 IU/mg on fibrin plates and directly activates plasminogen following Michaelis-Menten kinetics with Km = 1.1 microM and kappa cat = 0.0026 S-1. It is concluded that the plasminogen activator purified from CALU-3-conditioned media is physically and kinetically identical to single-chain urokinase-type plasminogen activator. With the present straightforward purification method and a readily available source, sufficient amounts of single-chain urokinase-type plasminogen activator can be obtained for more detailed investigations of its biochemical, biological, and thrombolytic properties.  相似文献   

9.
Plasminogen activator (PA) activity was identified in the conditioned medium of two human renal carcinoma cell lines, Cur and Caki-1. PA activity of medium, following chromatography on Con A-Sepharose, was divided into effluent and eluate fractions, the latter obtained after elution with methyl mannoside. The ratio of PA activity in effluent:eluate was 90:10 for Caki-1 and 60:40 for Cur. The PA of both effluent fractions and the Caki-1 eluate fraction was of the urokinase (UK) type. Identification rested on molecular weight determination by zymography (major component with Mr 52,000 and a less prominent component of 93,000), lack of binding to fibrin, inhibition by anti-UK antibodies, and lack of inhibitory effect of anti-tissue type PA (TPA) antibodies or the Erythrina trypsin inhibitor, which inhibits TPA but not UK. PA of the Cur eluate fraction gave a more complex pattern in that it bound significantly to fibrin (like TPA), was completely inhibited by both anti-UK and anti-TPA antibodies, but was unaffected by Erythrina trypsin inhibitor. These results raise the possibility of an unusual PA-like enzyme that immunologically cross reacts with anti-UK and anti-TPA. Most of the PA of both cell lines was secreted in a latent form that could be activated by trypsin treatment. The latency appears to result largely from secretion of urokinase proenzyme, which is consistent with the Mr 52,000 of the major PA species and the insensitivity to diisopropyl fluorophosphate inhibition prior to trypsin activation. However, in addition, a UK binding component was found in the conditioned medium, which produced an Mr 93,000 component by reaction with UK.  相似文献   

10.
The glycoprotein hormone erythropoietin (Ep), the primary regulator of erythropoiesis, is synthesized by the kidney and secreted as the mature protein with three N-linked and one O-linked oligosaccharide chains. To investigate the role(s) of each carbohydrate moiety in the biosynthesis and function of Ep, we have used oligonucleotide-directed mutagenesis of a cDNA for human Ep to alter the amino acids at each of the carbohydrate attachment sites. Each mutated cDNA construct was expressed in stably transfected sublines of a kidney cell line, baby hamster kidney. We show, by preventing attachment of N-linked carbohydrate at asparagines 38 or 83, or preventing O-linked glycosylation at serine 126, that glycosylation of each of these specific sites is critical for proper biosynthesis and secretion of Ep. Fractionation of cellular extracts demonstrated that the mutant proteins lacking glycosylation at each of these three sites, (38, 83, and 126) were associated mainly with membrane components or were degraded rapidly. Less than 10% of these three mutant proteins were processed properly and secreted from the cells. The Ep protein lacking N-linked glycosylation at asparagine 24 is synthesized and secreted as efficiently as native Ep. The carbohydrates at positions 24 and 38 may be involved in the biological activity of Ep, since the absence of either of the oligosaccharide side chains at these positions reduced the hormone's biological activity.  相似文献   

11.
The beta subunit of human chorionic gonadotropin contains two asparagine (N)-linked oligosaccharides. To examine the structural and functional roles of these oligosaccharide units in vivo, we constructed mutant genes containing alterations in either the asparagine or threonine codons of the two glycosylation consensus sequences and inserted them into a eukaryotic expression vector. Wild-type and mutant CG beta proteins were expressed in Chinese hamster ovary cells alone or in the presence of native alpha subunit. Pulse-chase analysis of the beta-expressing clones showed that absence of the second N-linked sugar but not the first slows secretion 1.6-1.8-fold; absence of both N-linked units slows secretion 2-2.4-fold. Analysis of dimer clones reveals that greater than 80% of the native and glycosylation mutant CG beta subunits are secreted as dimer. However, pulse-chase analysis of these clones also reveals that the mutants completely devoid of N-linked sugars but not the single site mutants are slow to assemble with the alpha subunit. Thus, in vivo the two N-linked oligosaccharides of CG beta are critical for efficient secretion and assembly with the alpha subunit and are likely important for proper folding of the CG beta subunit.  相似文献   

12.
We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.  相似文献   

13.
The role of Asn-linked oligosaccharide in the functional properties of both human tissue-type plasminogen activator (t-PA) and a genetic variant of t-PA was studied. Nonglycosylated and glycosylated wild-type t-PA were produced in mammalian cells which express recombinant t-PA. These proteins were compared in fibrin binding and 125I-labeled fibrin clot lysis assays, using purified components. The nonglycosylated form showed higher fibrin binding, as well as higher fibrinolytic potency than the glycosylated form. Subsequently, prevention of glycosylation of a t-PA variant which lacked the finger and epidermal growth factor domains (delta FE), was carried out in an attempt to enhance its fibrinolytic activity. Glycosylation was prevented by changing Asn to Gln; at Asn-117 to produce delta FE1X t-PA, and at Asn-117, -184, and -448 to produce delta FE3X t-PA. All variants were similar to wild-type t-PA in their catalytic dependence on fibrinogen fragments, fibrinolytic activity in fibrin autography analysis, and plasminogen activator activity. In a clot lysis assay, using citrated human plasma, the fibrinolytic potency of the variants were comparable to that of wild-type t-PA at activator concentrations of 17-51 nM (approximately 1-3 micrograms/ml). At 0.5-5.1 nM (approximately 0.03-0.3 micrograms/ml), however, the variant proteins had lower fibrinolytic potency than wild-type t-PA. Fifty percent lysis in 1.5 h for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, required 2.5, 10, 7.5, and 5.5 nM t-PA, respectively. The fibrinogenolytic activity in human plasma was measured for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, and showed significant fibrinogen depletion after 3 h of incubation at 51 nM, decreasing to 11, 11, 50, and 72% of basal levels, respectively. These data indicate that partial or total nonglycosylated t-PA variants have a higher fibrinolytic versus fibrinogenolytic ratio than their fully glycosylated counterparts.  相似文献   

14.
In a previous report we showed that plasmin-dependent lysis of a fibrin polymer, produced from purified components, was totally blocked if annexin II heterotetramer (AIIt) was present during fibrin polymer formation. Here, we show that AIIt inhibits fibrin clot lysis by stimulation of plasmin autodegradation, which results in a loss of plasmin activity. Furthermore, the C-terminal lysine residues of its p11 subunit play an essential role in the inhibition of fibrin clot lysis by AIIt. We also found that AIIt binds to fibrin with a K(d) of 436 nm and a stoichiometry of about 0.28 mol of AIIt/mol of fibrin monomer. The binding of AIIt to fibrin was not dependent on the C-terminal lysines of the p11 subunit. Furthermore, in the presence of plasminogen, the binding of AIIt to fibrin was increased to about 1.3 mol of AIIt/mol of fibrin monomer, suggesting that AIIt and plasminogen do not compete for identical sites on fibrin. Immunohistochemical identification of p36 and p11 subunits of AIIt in a pathological clot provides important evidence for its role as a physiological fibrinolytic regulator. These results suggest that AIIt may play a key role in the regulation of plasmin activity on the fibrin clot surface.  相似文献   

15.
Plasminogen preparation from donor blood and fibrinolytically active blood plasma from humans after sudden death were obtained using affinity chromatography on Lysin-sepharose 4B. The plasminogen preparation from donor blood was shown to be highly purified native plasminogen (Glu-plasminogen). The preparation containing activated plasminogen (Lys-plasminogen), plasmin, plasminogen activator, alpha 2-macroglobulin, alpha 1-antitrypsin, fibrin/fibrinogen was obtained from the blood plasma of humans after sudden death. The appearance of proteins lacking biological specificity to lysin-sepharose in the plasminogen preparation shows the ability of activated plasminogen and plasmin to form complexes with these proteins and demonstrates the retention of the functional activity in lysin-binding regions on their molecules. Monospecific sera to the isolated preparations were obtained, demonstrating the presence of the same immunochemical determinants in native and activated plasminogen.  相似文献   

16.
To study structure/function relationships of tissue plasminogen activator (t-PA) activity, one of the simplest modified t-PA structures to activate plasminogen in a fibrin-dependent manner was obtained by constructing an expression vector that deleted amino acid residues 4-175 from the full-length sequence of t-PA. The expression plasmid was introduced into a Syrian hamster cell line, and stable recombinant transformants, producing high levels of the modified plasminogen activator, were isolated. The resulting molecule, mt-PA-6, comprising the second kringle and serine protease domains of t-PA, produced a doublet of plasminogen activator activity having molecular masses of 40 and 42 kDa. The one-chain mt-PA-6 produced by cultured Syrian hamster cells was purified in high yield by affinity and size exclusion chromatography. The purified mt-PA-6 displayed the same two types of microheterogeneity observed for t-PA. NH2-terminal amino acid sequencing demonstrated that one-chain mt-PA-6 existed in both a GAR and a des-GAR form. Purified mt-PA-6 also existed in two glycosylation forms that accounted for the 40- and 42-kDa doublet of activity produced by the cultured Syrian hamster cells. Separation of these two forms by hydrophobic interaction chromatography and subsequent tryptic peptide mapping demonstrated that both forms contained N-linked glycosylation at Asn448; in addition, some mt-PA-6 molecules were also glycosylated at Asn184. Plasmin treatment of one-chain mt-PA-6 converted it to a two-chain molecule by cleavage of the Arg275-Ile276 bond. This two-chain mt-PA-6, like t-PA, had increased amidolytic activity. The fibrinolytic specific activities of the one- and two-chain forms of mt-PA-6 were similar and twice that of t-PA. The plasminogen activator activity of one-chain mt-PA-6 was enhanced greater than 80-fold by CNBr fragments of fibrinogen, and the one-chain enzyme lysed human clots in vitro in a dose-dependent manner. The ability to produce and purify a structurally simple plasminogen activator with desirable fibrinolytic properties may aid in the development of a superior thrombolytic agent for the treatment of acute myocardial infarction.  相似文献   

17.
Two components of the fibrinolytic system, plasminogen and the vascular plasminogen activator, have been isolated to apparent homogeneity from the post-venous occlusion plasma of three diabetic patients (hemoglobin A1C greater than 7%) and of one nondiabetic control person. Plasminogen activation was studied for each person separately in the absence and presence of CNBr fragments of fibrinogen. Activation of diabetic plasminogen by urokinase was not significantly altered as compared to the activation of control plasminogen. The same was found when diabetic plasminogen was activated by control vascular plasminogen activator in the presence of fibrinogen fragments but only at plasminogen concentrations below 10-30 nM; at higher substrate concentrations, however, plasminogen activation was impaired in a pattern resembling substrate inhibition. Activation of control plasminogen by diabetic vascular plasminogen activator was completely impaired in the absence of fibrinogen fragments. Addition of fibrinogen fragments stimulated plasmin formation by diabetic vascular plasminogen activator resulting in kinetic constants which were similar to the activation of control plasminogen by control vascular plasminogen activator in the absence of fibrinogen fragments (Km = 7.5 microM, kcat = 0.05 S-1). Addition of fibrinogen fragments in controls decreased Km values to less than 0.1 microM. Despite addition of fibrinogen fragments the rate of plasmin formation from diabetic plasminogen by diabetic vascular plasminogen activator isolated from the same diabetic donor was so small that kinetic constants could not be calculated.  相似文献   

18.
G Pohl  H J?rnvall  P Kok  P Wallén 《FEBS letters》1986,205(1):92-96
Tissue plasminogen activator was purified in high yield from pig heart by immunoaffinity chromatography and characterized by analysis of the glycosylation pattern and the N-terminal amino acid sequence. Comparisons with the human enzyme reveals residue exchanges in the A-chain at positions 3 (porcine Arg/human Gln) and 5 (Thr/Ile), and in the B-chain at positions 6 (Tyr/Phe), 10 (Thr/Ala) and 20 (Val/Ala). The glycosylation pattern for the porcine activator was determined by endoglycosidase treatment followed by gel electrophoresis. The A-chain contains a single high-mannose type of N-linked glycan structure and the B-chain contains a complex type of oligosaccharide. A similar but not identical pattern has been observed for the human activator, purified from melanoma cells.  相似文献   

19.
The effect of tissue plasminogen activator (TPA) or urokinase on the specific binding of human Glu-plasminogen to fibrin I formed in plasma by clotting with Reptilase was studied using 125I-plasminogen and 131I-fibrinogen. In the absence of TPA, small amounts of plasminogen were bound to fibrin I. TPA induced binding of plasminogen to plasma fibrin I that was dependent upon the concentrations of TPA and plasminogen as well as upon the time of incubation. Plasminogen binding occurred in association with fibrin clot lysis and the formation in the clot supernatant of alpha 2-plasmin inhibitor-plasmin complexes. Urokinase also induced binding of plasminogen to plasma fibrin I that was concentration- and time-dependent. The molecular form of plasminogen bound to the fibrin I plasma clot was identified as Glu-plasminogen by dodecyl sulfate-polyacrylamide gel electrophoresis and by fast performance liquid chromatography. Further studies demonstrated that fibrin I formed from fibrinogen that had been progressively degraded by plasmin-bound Glu-plasminogen. The mole ratio of plasminogen bound increased with the time of plasmin digestion. Glu-plasminogen did not bind to fibrin I formed from fibrinogen progressively digested by human leukocyte elastase, thereby demonstrating the specificity of plasmin. These studies demonstrate that plasminogen activators regulate the binding of Glu-plasminogen to fibrin I by catalyzing plasmin-mediated modifications in the fibrin substrate.  相似文献   

20.
The mechanism of activation of human Glu-plasminogen by fibrin-bound tissue-type plasminogen activator (t-PA) in a plasma environment or in a reconstituted system was characterized. A heterogeneous system was used, allowing the setting of experimental conditions as close as possible to the physiological fibrin/plasma interphase, and permitting the separate analysis of the products present in each of the phases as a function of time. The generation of plasmin was monitored both by spectrophotometric analysis and by radioisotopic analysis with a plasmin-selective chromogenic substrate and radiolabelled Glu-plasminogen respectively. Plasmin(ogen)-derived products were identified by SDS/PAGE followed by autoradiography and/or immunoblotting. When the activation was performed in a plasma environment, the products identified on the fibrin surface were Glu-plasmin (90%) and Glu-plasminogen (10%), whereas in the soluble phase only complexes between Glu-plasmin and its fast-acting inhibitor were detected. Identical results were obtained with a reconstituted system comprising solid-phase fibrin, t-PA, Glu-plasminogen and and alpha 2-antiplasmin. In contrast, when alpha 2-antiplasmin was omitted from the solution, Lys-plasmin was progressively generated on to the fibrin surface (30%) and released to the soluble phase. In the presence of alpha 2-antiplasmin or in plasma, the amount of active plasmin generated on the fibrin surface was lower than in the absence of the inhibitor: in a representative experiment the initial velocity of plasmin generation was 2.8 x 10(-3), 2.0 x 10(-3) and 1.8 x 10(-3) (delta A405/min) for 200 nM-plasminogen, 200 nM-plasminogen plus 100 nM-alpha 2-antiplasmin and native plasma respectively. Our results indicate that in plasma or in a reconstituted purified system containing plasminogen and alpha 2-antiplasmin at a ratio similar to that found in plasma (1) the activation pathway of native Glu-plasminogen proceeds directly to the formation of Glu-plasmin, (2) Lys-plasminogen is not an intermediate of the reaction and therefore (3) Lys-plasmin is not the final active product. However, in the absence of the inhibitor, Lys-plasmin and probably Lys-plasminogen, which is more readily activated to plasmin than is Glu-plasminogen, are generated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号