首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of chromatin structure on the binding of a chemical carcinogen to the genomic DNA was studied. The binding in vivo of the ultimate carcinogen, benzo-pyrene 7,8,-diol,-9,10-epoxide, to various regions of the SV40 chromosome was revealed by an immunological method. Particular attention was given to restriction fragments which include the origin of replication which is "non-nucleosomal" in a significant fraction of the chromosomes. The distribution of (+/-) trans-7,8-dihydrobenzo[alpha]pyrene-7,8-diol-9,10-epoxide (BPDE) adducts was studied in 1) SV40 DNA modified in vitro to a level of 20 adducts/molecule, 2) DNA from SV40 chromosomes modified in vivo to a level of less than 1 adduct, and 3) DNA from only those chromosomes with an open origin of replication. In other experiments, the binding of BPDE to the origin region was compared to the binding to nucleosome core particle DNA from the viral chromosome. The origin region bound 1.7-fold more BPDE than core DNA, while linker DNA is 3-fold more modified than core DNA. However, the origin region was only about 20% more modified than any other region of the chromosome. We conclude that while the conformation of the DNA in chromatin has a slight effect on its accessibility to the carcinogen, the SV40 chromosome does not contain a particular "hot spot" which is preferentially modified by BPDE.  相似文献   

2.
Abstract

A theoretical model is proposed for the covalent binding of (+) 7 β,8α-dihydroxy-9α, 10α- epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene denoted by BPDE I(+), to N2 on guanine. The DNA must kink a minimum of 39° to allow proper hybrid configurations about the C10 and N2 atoms involved in bond formation and to allow stacking of the pyrene moiety with the non-bonded adjacent base pair. Conservative (same sugar puckers and glycosidic angles as in B-DNA) and non-conservative (alternating sugar puckers as in intercalation sites) conformations are found and they are proposed structures in pathways connecting B-DNA, an intercalation site, and a kink site in the formation of a covalently intercalative bound adduct of BPDE I(+) to N2 on guanine. Stereographic projections are presented for (3′) and (5′) binding in the DNA. Experimental data for bending of DNA by BPDE, orientation of BPDE in DNA and unwinding of superhelical DNA is explained. The structure of a covalent intercalative complex is predicted to result from the reaction. Also, an anti ? syn transition of guanine results in a structure which allows the DNA to resume its overall B-form. The only change is that guanine has been rotated by 200° about its glycosidic bond so that the BPDE I(+) is bound in the major groove. The latter step may allow the DNA to be stored with an adduct which may produce an error in the genetic code.  相似文献   

3.
Basic helix-loop-helix (bHLH) proteins perform a wide variety of biological functions. Most bHLH proteins recognize the consensus DNA sequence CAN NTG (the E-box consensus sequence is underlined) but acquire further functional specificity by preferring distinct internal and flanking bases. In addition, induction of myogenesis by MyoD-related bHLH proteins depends on myogenic basic region (BR) and BR-HLH junction residues that are not essential for binding to a muscle-specific site, implying that their BRs may be involved in other critical interactions. We have investigated whether the myogenic residues influence DNA sequence recognition and how MyoD, Twist, and their E2A partner proteins prefer distinct CAN NTG sites. In MyoD, the myogenic BR residues establish specificity for particular CAN NTG sites indirectly, by influencing the conformation through which the BR helix binds DNA. An analysis of DNA binding by BR and junction mutants suggests that an appropriate BR-DNA conformation is necessary but not sufficient for myogenesis, supporting the model that additional interactions with this region are important. The sequence specificities of E2A and Twist proteins require the corresponding BR residues. In addition, mechanisms that position the BR allow E2A to prefer distinct half-sites as a heterodimer with MyoD or Twist, indicating that the E2A BR can be directed toward different targets by dimerization with different partners. Our findings indicate that E2A and its partner bHLH proteins bind to CAN NTG sites by adopting particular preferred BR-DNA conformations, from which they derive differences in sequence recognition that can be important for functional specificity.  相似文献   

4.
5.
Benzo[a]pyrene (B[a]P) is a widespread environmental carcinogen that must be activated by cellular metabolism to a diol epoxide form (BPDE) before it reacts with DNA. It has recently been shown that BPDE preferentially modifies the guanine in methylated 5'-CpG-3' sequences in the human p53 gene, providing one explanation for why these sites are mutational hot spots. Using purified duplex oligonucleotides containing identical methylated and unmethylated CpG sequences, we show here that BPDE preferentially modified the guanine in hemimethylated or fully methylated CpG sequences, producing between 3- and 8-fold more modification at this site. Analysis of this reaction using shorter duplex oligonucleotides indicated that it was the level of the (+)-trans isomer that was specifically increased. To determine if there were conformational differences between the methylated and unmethylated B[a]P-modified DNA sequences that may be responsible for this enhanced reactivity, a native polyacrylamide gel electrophoresis analysis was carried out using DNA containing isomerically pure B[a]P-DNA adducts. These experiments showed that each adduct resulted in an altered gel mobility in duplex DNA but that only the presence of a (+)-trans isomer and a methylated C 5' to the adduct resulted in a significant gel mobility shift compared with the unmethylated case.  相似文献   

6.
The effects of secondary structure on DNA modification by (+/-)-7 beta, 9 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene [(+/-)BPDE I] were investigated. No differences in the total extent of (+/-) BPDE I binding to double- and single-stranded calf thymus DNA were found. High-performance liquid chromatography (LC) of the nucleoside adducts obtained from hydrolysates of native and denatured calf thymus, as well as from superhelical and linear plasmid DNA, indicated that in all cases the major adduct (60--80% of total adducts) was formed by reaction of the (+) enantiomer of BPDE I with the N-2 position of dG residues in the DNA. A minor adduct formed from the reaction of the (-) enantiomer with dG residues was also detected and was present in greater amounts in denautred DNA than in native DNA. Small amounts of BPDE I--dA and BPDE I--dC adducts were also detected in both the single- and double-stranded DNAs. Restriction enzyme analysis of BPDE I modified SV40 and phage lambda DNA provided evidence that the modification of DNA by this carcinogen is fairly random with respect to nucleotide sequence. Partial hydrolysis of modified plasmid DNA by the single-strand-specific S1 nuclease and LC analysis of the nucleoside adducts in the digested and undigested fractions of the DNA revealed no preferential excision by the S1 nuclease of the different BPDE I--deoxynucleoside adducts. Functional changes in BPDE I modified DNA were demonstrated. With increasing extents of modification, there was a decrease in the ability of plasmid DNA to transfect a receptive Escherichia coli strain to antibiotic resistance.  相似文献   

7.
Mutational specificity of benzo[a]pyrene diolepoxide in monkey cells   总被引:4,自引:0,他引:4  
Benzo[a]pyrene diolepoxide (BPDE) is thought to be the major mutagenic and carcinogenic intermediate in benzo[a]pyrene metabolism in mammalian cells. In order to test the mutagenic specificity of this compound in mammalian cells, we have used the pZ189 shuttle vector system to identify and analyze point mutations induced when DNA treated in vitro with BPDE is replicated in monkey cells. We find that point mutations occur almost exclusively at G.C base pairs; G.C----T.A and G.C----C.G transversions and single base pair deletions occur most frequently. This pattern is consistent with the known preferential covalent binding of BPDE to G residues.  相似文献   

8.
Depurination of benzo[a]pyrene-diolepoxide treated DNA   总被引:3,自引:0,他引:3  
Rat liver DNA was treated in vitro with benzo[a]pyrene-diolepoxide (BPDE), the ultimate carcinogenic metabolite derived from the polycyclic hydrocarbon benzo[a]pyrene. On incubation of the reacted DNA, apurinic sites developed which gave rise to strand breakage in alkaline solution. The reduction in molecular weight produced by these breaks was measured by analytical ultracentrifugation. In the case of anti-BPDE this depurination was shown to occur in two stages. The first was mainly due to attack at the 7-position of guanine, to yield an adduct which was lost from the DNA within a few hours. The second stage was due to much slower loss of the major N2-guanine adduct. The separated enantiomers, (+)- and (-)-anti-BPDE, and syn-BPDE all caused depurination to various extents. It is argued that although these processes are important in a study of the action of BPDE on DNA in vitro, their contribution to the biological activity of BPDE is probably negligible.  相似文献   

9.
10.
The study of the interactions in the ground state between 4,5′-dimethylangelicin, an angular furocoumarin, and various synthetic and natural DNA samples have evidenced the presence in the macromolecule of preferred sequences suitable for binding the small ligand. They are represented by an alternate sequence of purine and pyrimidine bases in each strand of the macromolecule, without difference between the two base pairs A-T and C-G.The study of the photochemical interactions between the same DNA samples and the 4,5′-dimethylangelicin shows that preferred sites are present in the macromolecule for the covalent addition of the furocoumarin to the macromolecule too. These sites however have more strict requirements than those useful for dark binding; they are in fact represented by alternate sequences of A-T in each strand such as those present in poly[d(A-T)] · poly[d(A-T)].Moreover fluorescence studies made on the same DNA samples irradiated in the presence of the furocoumarin suggest that the alternate C-G regions favour formation of 4′,5′-fluorescent adducts.  相似文献   

11.
Mutations in the hprt gene in T-lymphocyte clones isolated from primary cultures treated with the (+)-anti enantiomer of 7,8-dihydroxy-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene (BPDE) in vitro, and from untreated control cultures, were characterized using polymerase chain reaction and direct sequencing of hprt cDNA and genomic fragments. The spectrum of BPDE-induced mutations was very specific and clearly different from the background spectrum, which comprised many different types of mutations. Of the BPDE-induced mutations, 20/22 were transversions of GC base pairs and 18/22 were GC greater than TA transversions, which is in agreement with what has been found in other mammalian systems. While no particular 'hotspot' was observed for BPDE in the hprt gene, a sequence context specificity was detected. Ten of the 14 BPDE-induced mutations in the coding region were located in the sequence context AGG, and 2 in AG dinucleotides, which indicates that such sequences are sensitive to BPDE mutagenesis. Nine of the 22 BPDE-induced mutations and 2/12 background point mutations caused mRNA splicing errors. Six of the BPDE-induced splicing errors were caused by GC greater than TA transversions in the AG dinucleotide of different splice acceptor sites, which indicates that these sites may be frequent targets of BPDE mutagenesis. All mutated GC base pairs in the BPDE-induced spectrum were oriented so that the guanine was located on the non-transcribed strand. Assuming that the premutagenic lesion in these cases was covalent binding of BPDE to guanine and that BPDE bound randomly to both strands, the strand specificity of the BPDE-induced mutations indicates that preferential excision repair of BPDE adducts on the transcribed strand occurs in the hprt gene in human T-cells.  相似文献   

12.
The Caenorhabditis elegans SKN-1 protein binds DNA through a basic region like those of bZIP proteins and through a flexible amino-terminal arm segment similar to those with which numerous helix-turn-helix proteins bind to bases in the minor groove. A recent X-ray crystallographic structure suggests that the SKN-1 amino-terminal arm provides only nonspecific DNA binding. In this study, however, we demonstrate that this segment mediates recognition of an AT-rich element that is part of the preferred SKN-1 binding site and thereby significantly increases the sequence specificity with which SKN-1 binds DNA. Mutagenesis experiments show that multiple amino acid residues within the arm are involved in binding. These residues provide binding affinity through distinct but partially redundant interactions and enhance specificity by discriminating against alternate sites. The AT-rich element minor groove is important for binding of the arm, which appears to affect DNA conformation in this region. This conformational effect does not seem to involve DNA bending, however, because the arm does not appear to affect a modest DNA bend that is induced by SKN-1. The data illustrate an example of how a small, flexible protein segment can make an important contribution to DNA binding specificity through multiple interactions and mechanisms.  相似文献   

13.
M W Van Dyke  P B Dervan 《Biochemistry》1983,22(10):2373-2377
The DNA binding sites for the antitumor, antiviral, antibiotics chromomycin, mithramycin, and olivomycin on 70 base pairs of heterogeneous DNA have been determined by using the (methidiumpropyl-EDTA)iron(II) [MPE x Fe(II)] DNA cleavage inhibition pattern technique. Two DNA restriction fragments 117 and 168 base pairs in length containing the lactose operon promoter-operator region were prepared with complementary strands labeled with 32P at the 3' end. MPE x Fe(II) was allowed to partially cleave the restriction fragment preequilibrated with either chromomycin, mithramycin, or olivomycin in the presence of Mg2+. The preferred binding sites for chromomycin, mithramycin, and olivomycin in the presence of Mg2+ appear to be a minimum of 3 base pairs in size containing at least 2 contiguous dG x dC base pairs. Many binding sites are similar for the three antibiotics; chromomycin and olivomycin binding sites are nearly identical. The number of sites protected from MPE x Fe(II) cleavage increases as the concentration of drug is raised. For chromomycin/Mg2+, the preferred sites on the 70 base pairs of DNA examined are (in decreasing affinity) 3'-GGG, CGA greater than CCG, GCC greater than CGA, CCT greater than CTG-5'. The sequence 3'-CGA-5' has different affinities, indicating the importance of either flanking sequences or a nearly bound drug.  相似文献   

14.
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.  相似文献   

15.
Studies on the interaction of isoxazolcurcumin with calf thymus DNA   总被引:1,自引:0,他引:1  
The interaction of isoxazolcurcumin (IOC), a synthetic derivative of curcumin, with calf thymus-DNA (ct-DNA) has been investigated by UV-Vis, fluorescence, circular dichroism spectroscopies, viscosity measurements and docking studies. From these analyses, the binding constant, number of binding sites and mode of binding of IOC to ct-DNA has been determined. The binding constant of IOC to DNA calculated from both UV-Vis and CD spectra was found to be in the 10(4)M(-1) range. Analyses of fluorescence spectra, viscosity measurements and molecular modeling of IOC-DNA interactions indicate that IOC is a minor groove binder of ct-DNA and preferentially binds to AT rich regions. Ethidium bromide displacement studies revealed that IOC did not have any effect on ethidium bromide bound DNA which is indicative of groove binding. To elucidate the preferred region of binding of IOC to DNA, docking studies have been performed and changes in accessible surface area (DeltaASA) of nucleobases determined due to IOC-DNA complexation.  相似文献   

16.
17.
Flow linear dichroism (LD) of different benzo[a]pyrene diol epoxide (BPDE) isomers covalently bound to calf thymus DNA or poly(dG-dC) provides information about binding geometry and DNA perturbation. With anti-BPDE the apparent angle between the long axis (z) of the pyrene chromophore and the DNA helix axis is approximately 30 degrees as evidenced from the LD of z-polarized absorption bands in the pyrenyl chromophore at 252 and 346 nm. The corresponding angle for the in-plane short axis (y) is determined to be approximately 70 degrees from a y-polarized band at 275 nm. The binding of (+)-anti-BPDE to DNA is found to cause a considerable reduction of the DNA orientation. This is ascribed to a decreased persistence length of DNA, owing either to increased flexibility ("flexible joints") or to permanent kinks at the points of binding. The reduced linear dichroism (LDr), i.e., the ratio between LD and isotropic absorbance, of the long-wavelength absorption band system of BPDE bound to DNA exhibits a wavelength dependence that indicates a relatively wide orientational distribution of the z axis of pyrene. Fluorescence data support the conclusion of a heterogeneous distribution, and a very low polarization anisotropy indicates a mobility between the different orientational states, which is rapid compared to the fluorescence lifetime (nanosecond time scale). Attempts are made to simulate the observed LDr features of the (+)-anti-BPDE-poly(dG-dC) complex using different distribution models on the assumption that the angular dependence of the spectral perturbation is due to dispersive interactions with DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Porter PC  Mellon I  States JC 《DNA Repair》2005,4(3):341-349
Functional effects of Arg228Gln and Val2343Leu XPA polymorphisms on benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide-(+/-)-anti (BPDE) survival and repair were investigated in SV40 immortalized XP12RO cells complemented with wild type and polymorphic XPA cDNAs in an inducible cDNA expression system. In contrast to previous studies showing little impact of XPA polymorphisms on UV survival and repair, cells complemented with polymorphic XPAs displayed improved BPDE survival and repair as compared to wild type XPA-complemented cells. Survival after BPDE treatment was measured using AlamarBlue reduction and colony forming ability. Cells expressing low levels of either polymorphic XPA had equivalent or improved survival compared to wild type XPA-complemented cells (XPAwt cells). XPA induction improved BPDE survival in Arg228Gln (R228Q cells) and Val234Leu (V234L cells) complemented cells, but not XPAwt cells. BPDE-induced DNA damage repair was measured both by reactivation after transfection of a luciferase reporter plasmid reacted with BPDE in vitro, and by removal of adducts from genomic DNA of BPDE-treated cells. BPDE-induced DNA damage repair in R228Q and V234L cells expressing XPA at very low levels was similar to repair in XPAwt cells expressing XPA at normal levels. XPA induction improved repair in R228Q and V234L cells but not in XPAwt cells. Our findings suggest that both Arg228Gln and Val234Leu XPAs function better than wild type XPA for BPDE adduct removal. These observations differ from UV repair results suggesting that the differences are lesion specific. The location of the polymorphisms within the putative poly(ADP-ribose) binding domain suggests that poly(ADP-ribose) interaction is important in repair.  相似文献   

19.
20.
Linear dichroism and absorption methods are used to study the orientations of transition moments of absorption bands of polycyclic aromatic epoxide derivatives which overlap with those of the DNA band in the 240-300 nm region. Both the short and long axes of the pyrene residues of 1-oxiranylpyrene (1-OP) and the (+) and (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) noncovalently bound to double-stranded native DNA are oriented approximately perpendicular to the axis of the DNA helix, consistent with intercalative modes of binding. The covalent binding of these three epoxide derivatives to DNA is accompanied by reorientations of both the short and long axes of the pyrene residues. Covalent adducts derived from the highly mutagenic (+)-anti-BPDE are characterized by tilts of the short axis within 35 degrees or less, and of the long axis by more than 60-80 degrees, with respect to the planes of the DNA bases. In the adducts derived from the binding of the less mutagenic (-)-anti-BPDE and 1-OP epoxide derivatives to DNA, the long axes of the pyrenyl rings are predominantly oriented within 25 degrees of the planes of the DNA bases; however, in the case of the (-) enantiomer of BPDE, there is significant heterogeneity of conformations. In the case of the 1-OP covalent DNA adducts, the short axis of the pyrene ring system is tilted away from the planes of the DNA bases, and the pyrene ring system is not intercalated between DNA base-pairs as in the noncovalent complexes. The stereochemical properties of the saturated 7,8,9,10-ring in BPDE, or the lack of the 7 and 8 carbon atoms in 1-OP, do not seem to affect noncovalent intercalative complex formation which, most likely, is influenced mainly by the flat pyrenyl residues. These structural features, however, strongly influence the conformations of the covalent adducts, which in turn may be responsible for the differences in the mutagenic activities of these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号