共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study examined Ca(2+) sensitivity of diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that Dia(m) fibers expressing the MHC(slow) isoform have greater Ca(2+) sensitivity than fibers expressing fast MHC isoforms and that this fiber-type difference in Ca(2+) sensitivity reflects the isoform composition of the troponin (Tn) complex (TnC, TnT, and TnI). Studies were performed in single Triton-X-permeabilized Dia(m) fibers. The Ca(2+) concentration at which 50% maximal force was generated (pCa(50)) was determined for each fiber. SDS-PAGE and Western analyses were used to determine the MHC and Tn isoform composition of single fibers. The pCa(50) for Dia(m) fibers expressing MHC(slow) was significantly greater than that of fibers expressing fast MHC isoforms, and this greater Ca(2+) sensitivity was associated with expression of slow isoforms of the Tn complex. However, some Dia(m) fibers expressing MHC(slow) contained the fast TnC isoform. These results suggest that the combination of TnT, TnI, and TnC isoforms may determine Ca(2+) sensitivity in Dia(m) fibers. 相似文献
2.
3.
The development of muscle spindles, with respect to the expression of myosin heavy chain isoforms was studied in rat hind limbs from 17 days of gestation up to seven days after birth. Serial cross-sections were labelled with antibodies against slow tonic, slow twitch and neonatal isomyosins, myomesin, laminin and neurofilament protein. At 17-18 days of gestation, a small population of primary myotubes expressing slow tonic myosin were identified as the earliest spindle primordia. These myotubes also expressed slow twitch and, to a lesser extent, neonatal myosin. At 19-20 days of gestation a second myotube became apparent; this staining strongly with anti-neonatal myosin. A day later this secondary myotube acquired reactivity to anti-slow tonic and anti-slow twitch myosins. By birth, a third myotube was present; this staining strongly with anti-neonatal myosin but otherwise unreactive with the other antibodies against myosin heavy chains. Three days after birth a fourth myotube, with identical reactivity to the third one, became apparent. Regional variation in the expression of isomyosins, which was present since birth in the two nuclear bag fibers was further enhanced: the nuclear bag staining strongly with anti-slow tonic and antineonatal in the equatorial region and with decreasing intensity towards the poles, whilst with anti-slow twitch the stainability was low in the equatorial and high in the polar region. The nuclear bag fiber showed a homogeneous staining: high with anti-slow tonic, moderate with anti-neonatal, and displayed stainability to anti-slow twitch myosin in the polar regions only. No regional variation was found along the chain fiber/myotube.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Summary The development of muscle spindles, with respect to the expression of myosin heavy chain isoforms was studied in rat hind limbs from 17 days of gestation up to seven days after birth. Serial cross-sections were labelled with antibodies against slow tonic, slow twitch and neonatal isomyosins, myomesin, laminin and neurofilament protein.At 17–18 days of gestation, a small population of primary myotubes expressing slow tonic myosin were identified as the earliest spindle primordia. These myotubes also expressed slow twitch and, to a lesser extent, neonatal myosin. At 19–20 days of gestation a second myotube became apparent; this staining strongly with anti-neonatal myosin. A day later this secondary myotube acquired reactivity to anti-slow tonic and anti-slow twitch myosins. By birth, a third myotube was present; this staining strongly with anti-neonatal myosin but otherwise unreactive with the other antibodies against myosin heavy chains. Three days after birth a fourth myotube, with identical reactivity to the third one, became apparent. Regional variation in the expression of isomyosins, which was present since birth in the two nuclear bag fibers was further enhanced: the nuclear bag2 staining strongly with anti-slow tonic and antineonatal in the equatorial region and with decreasing intensity towards the poles, whilst with anti-slow twitch the stainability was low in the equatorial and high in the polar region. The nuclear bag1 fiber showed a homogeneous staining: high with anti-slow tonic, moderate with anti-neonatal, and displayed stainability to antislow twitch myosin in the polar regions only. No regional variation was found along the chain fiber/myotube. At seven days after birth, the pattern of reactivity was similar to that found in the adult spindles, except for the bag1 fiber which still expressed neonatal myosin.We show that slow tonic myosin is expressed from early development and it is a reliable marker of developing bag fibers. We suggest that muscle spindles are formed from special cell lineages of which the primary generation myotubes expressing slow tonic myosin represent the primordium of muscle spindles. 相似文献
5.
6.
Denervation alters myosin heavy chain expression and contractility of developing rat diaphragm muscle. 总被引:2,自引:0,他引:2
We hypothesized that unilateral denervation (DNV) of the rat diaphragm muscle (Dia(m)) in neonates at postnatal day 7 (D-7) alters normal transitions of myosin heavy chain (MHC) isoform expression and thereby affects postnatal changes in maximum specific force (P(o)) and maximum unloaded shortening velocity (V(o)). The relative expression of different MHC isoforms was analyzed electrophoretically. With DNV at D-7, expression of MHC(neo) in the Dia(m) persisted, and emergence of MHC(2X) and MHC(2B) was delayed. By D-21 and D-28, relative expression of MHC(2A) and MHC(2B) was reduced in DNV compared with control (CTL) animals. Expression of MHC(neo) also reappeared in adult Dia(m) by 2-3 wk after DNV, and relative expression of MHC(2B) was reduced. At each age, P(o) was reduced and V(o) was slowed by DNV, compared with CTL. In CTL Dia(m), postnatal changes in P(o) and V(o) were associated with an increase in fast MHC isoform expression. In DNV Dia(m), no such association existed. We conclude that, in the Dia(m), DNV induces alterations in both MHC isoform expression and contractile properties, which are not necessarily causally linked. 相似文献
7.
Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers 总被引:4,自引:0,他引:4
Talmadge Robert J.; Roy Roland R.; Edgerton V. Reggie 《Journal of applied physiology》1996,81(6):2540-2546
Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl.Physiol. 81(6): 2540-2546, 1996.The effects of14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044)on myosin heavy chain (MHC) isoform content of the rat soleus muscleand single muscle fibers were determined. On the basis ofelectrophoretic analyses, there was a de novo synthesis of type IIx MHCbut no change in either type I or IIa MHC isoform proportions aftereither SF or HS compared with controls. The percentage of fiberscontaining only type I MHC decreased by 26 and 23%, and the percentageof fibers with multiple MHCs increased from 6% in controls to 32% inHS and 34% in SF rats. Type IIx MHC was always found in combinationwith another MHC or combination of MHCs; i.e., no fibers contained typeIIx MHC exclusively. These data suggest that the expression of thenormal complement of MHC isoforms in the adult rat soleus muscle isdependent, in part, on normal weight bearing and that the absence ofweight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus. 相似文献
8.
Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. 总被引:5,自引:0,他引:5
In the present study, myosin heavy chain (MHC) content per half sarcomere, an estimate of the number of cross bridges available for force generation, was determined in rat diaphragm muscle (Dia(m)) fibers expressing different MHC isoforms. We hypothesize that fiber-type differences in maximum specific force [force per cross-sectional area (CSA)] reflect the number of cross bridges present per CSA. Studies were performed on single, Triton X-100-permeabilized rat Dia(m) fibers. Maximum specific force was determined by activation of single Dia(m) fibers in the presence of a high-calcium solution (pCa, -log Ca(2+) concentration of 4.0). SDS-PAGE and Western blot analyses were used to determine MHC isoform composition and MHC content per half sarcomere. Differences in maximum specific force across fast MHC isoforms were eliminated when controlled for half-sarcomere MHC content. However, the force produced by slow fibers remained below that of fast fibers when normalized for the number of cross bridges available. On the basis of these results, the lower force produced by slow fibers may be due to less force per cross bridge compared with fast fibers. 相似文献
9.
10.
Basha M Chang S Smolock EM Moreland RS Wein AJ Chacko S 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,291(4):R1076-R1084
Contractility of the proximal and distal vaginal wall smooth muscle may play distinct roles in the female sexual response and pelvic support. The goal of this study was to determine whether differences in contractile characteristics of smooth muscle from these regions reside in differences in the expression of isoforms of myosin, the molecular motor for muscle contraction. Adult female Sprague-Dawley rats were killed on the day of estrus, and the vagina was dissected into proximal and distal segments. The Vmax at peak force was greater for tissue strips of the proximal vagina compared with that of distal (P < 0.01), although, at steady state, the Vmax for the muscle strips from the two regions was not different. Furthermore, at steady state, muscle stress was higher (P < 0.001) for distal vaginal strips (n = 5). Consistent with the high Vmax for the proximal vaginal strips, RT-PCR results revealed a higher %SM-B (P < 0.001) in the proximal vagina. A greater expression of SM-B protein (P < 0.001) was also detected by Western blotting (n = 4). Interestingly, there was no regional difference noted in SM-1/SM-2 isoforms (n = 6). The proximal vagina had a higher expression of myosin heavy chain protein (P < 0.01) and a greater percentage of smooth muscle bundles (P < 0.001). The results of this study are the first demonstration of a regional heterogeneity in Vmax and myosin isoform distribution in the vagina wall smooth muscle and confirm that the proximal vaginal smooth muscle exhibits phasic contractile characteristics compared with the distal vaginal smooth muscle, which is tonic. 相似文献
11.
Rajab P Fox J Riaz S Tomlinson D Ball D Greenhaff PL 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(3):R1076-R1081
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism. 相似文献
12.
S K Powers J Lawler D Criswell H Silverman H V Forster S Grinton D Harkins 《Journal of applied physiology》1990,69(2):648-650
This study characterized the biochemical properties of the rat diaphragm by measuring the activities of selected citric acid cycle and glycolytic enzymes. The diaphragm was removed from 10 female Sprague-Dawley rats (180 days old) and dissected into five discrete anatomic regions: crural (region 1), left posterior costal (region 2), left anterior costal (region 3), right anterior costal (region 4), and right posterior costal (region 5). Sections were assayed for total protein concentration and the activities of succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH). The SDH activity in the crural region was approximately 18% lower (P less than 0.05) than that in any costal region. Furthermore, protein concentration was significantly lower (P less than 0.05) in the crural region compared with all costal regions. In contrast, costal regions 2-5 did not significantly differ from each other in protein concentration or SDH activity. LDH activity did not differ significantly (P greater than 0.05) between regions. Finally, the LDH-to-SDH activity ratio was significantly higher (P less than 0.05) in the crural diaphragm compared with all costal regions. We conclude that the crural region of the rat diaphragm is significantly lower in oxidative capacity than all the costal regions. Investigators who use a rodent model to study diaphragmatic function and plasticity should consider the oxidative heterogeneity of the diaphragm when designing experiments. 相似文献
13.
Diversity in expression of myosin heavy chain isoforms and M-band proteins in rat muscle spindles 总被引:1,自引:0,他引:1
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles. 相似文献
14.
F. Pedrosa G. S. Butler-Browne G. K. Dhoot D. A. Fischman L. -E. Thornell 《Histochemistry and cell biology》1989,92(3):185-194
Summary The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations.Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with antineonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition, (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested.Taken together, the data show that in adult rat solcus, slow tonic and neonatal myosin heavy, chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles. 相似文献
15.
This study was designed to test the hypothesis that myosin heavy (MHC) and light chain (MLC) plasticity resulting from hindlimb suspension (HS) is an age-dependent process. By using an electrophoretic technique, the distribution of MHC and MLC isoforms was quantitatively evaluated in the soleus muscles from 3- or 12-wk-old rats after 1-3 wk of HS treatment was maintained. In normal 12- and 15-wk-old rats, the soleus muscles contained a predominance of MHCI ( approximately 94%) with small amounts of MHCIIa, but not MHCIId or MHCIIb. The suspended muscles of adult rats were characterized by the appearance of MHCIIb and MHCIId, the latter reaching approximately 6% after 3 wk of HS treatment. In contrast to changes in MHC, HS did not induce a transition in the MLC pattern in the soleus muscles from adult rats. Compared with adult rats, in juveniles HS had a much more pronounced effect on the shift toward faster MHC and MLC isoform expression. The soleus muscles of 6-wk-old rats after 3 wk of HS were composed of 37.0% MHCI, 19.1% MHCIIa, 23.7% MHCIId, and 20.2% MHCIIb. Changes in MLC isoforms consisted of an increase in MLC1f and MLC2f concomitant with a decrease in MLC2s. These results indicate the existence of a differential effect of HS on MHC and MLC transitions that appears to be age dependent. They also suggest that the suspended soleus muscles from young rats may acquire the intrinsic contractile properties that are intermediate between those in the normal soleus and typical fast-twitch skeletal muscles. 相似文献
16.
Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat 总被引:6,自引:0,他引:6
Stevens Laurence; Sultan Karim R.; Peuker Heidemarie; Gohlsch Barbel; Mounier Yvonne; Pette Dirk 《American journal of physiology. Cell physiology》1999,277(6):C1044
Time-dependent changes in myosin heavy chain(MHC) isoform expression were investigated in rat soleus muscleunloaded by hindlimb suspension. Changes at the mRNA level weremeasured by RT-PCR and correlated with changes in the pattern of MHCprotein isoforms. Protein analyses of whole muscle revealed that MHCIdecreased after 7 days, when MHCIIa had increased, reaching a transient maximum by 15 days. Longer periods led to inductions and progressive increases of MHCIId(x) and MHCIIb. mRNA analyses of whole muscle showedthat MHCIId(x) displayed the steepest increase after 4 days andcontinued to rise until 28 days, the longest time period investigated.MHCIIb mRNA followed a similar time course, although at lower levels.MHCI mRNA, present at extremely low levels in control soleus, peakedafter 4 days, stayed elevated until 15 days, and then decayed.Immunohistochemistry of 15-day unloaded muscles revealed that MHCIwas present in muscle spindles but at low amounts also in extrafusalfibers. The slow-to-fast transitions thus seem to proceed in the orderMHCI MHCIIa MHCIId(x) MHCIIb. Ourfindings indicate that MHCI is transiently upregulated in somefibers as an intermediate step during the transition from MHCI to MHCIIa. 相似文献
17.
A. M. Mukhina A. V. Zheleznyakova Yu. N. Kitina B. S. Shenkman T. L. Nemirovskaya 《Biophysics》2006,51(5):811-816
An attempt was made to determine whether or not the concentration of NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1) in nuclear and cytoplasmic extracts is related to an increase in the concentration of fibers containing type IIa myosin heavy chains under modeled gravitational unloading of m. soleus. Experiments were carried out on Wistar rats using the Morey-Holton tail suspension model. It was found that the soleus contains three isoforms of NFATc1 (140, 110, and 86 kDa). Under unloading, the 140-kDa isoform is translocated into the nucleus, the concentration of the 110-kDa isoform in the cytoplasmic extract decreases, and the concentration of the 86-kDa isoform in the nuclear extract increases. Under gravitational unloading of the muscle, the concentration of fibers containing type IIa myosin heavy chains increases. The increase in the concentration of the 140-and 86-kDa NFATc1 isoforms in the nucleus is accompanied by a decrease in the fraction of muscle fibers containing type I myosin heavy chains and an increase in the fraction containing type IIa chains. 相似文献
18.
19.
Effect of thyroid hormone on the myosin heavy chain isoforms in slow and fast muscles of the rat 总被引:3,自引:0,他引:3
Jakubiec-Puka A Ciechomska I Mackiewicz U Langford J Chomontowska H 《Acta biochimica Polonica》1999,46(3):823-835
The myosin heavy chain (MHC) was studied by biochemical methods in the slow-twitch (soleus) and two fast-twitch leg muscles of the triiodothyronine treated (hyperthyroid), thyroidectomized (hypothyroid) and euthyroid (control) rats. The changes in the contents of individual MHC isoforms(MHC-1, MHC-2A, MHC-2B and MHC-2X) were evaluated in relation to the muscle mass and the total MHC content. The MHC-1 content decreased in hyperthyreosis, while it increased in hypothyreosis in the soleus and in the fast muscles. The MHC-2A content increased in hyperthyreosis and it decreased in hypothyreosis in the soleus muscle. In the fast muscles hyperthyreosis did not affect the MHC-2A content, whereas hypothyreosis caused an increase in this MHC isoform content. The MHC-2X, present only in traces or undetected in the control soleus muscle, was synthesised in considerable amount in hyperthyreosis; in hypothyreosis the MHC-2X was not detected in the soleus. In the fast muscles the content of MHC-2X was not affected by any changes in the thyroid hormone level. The MHC-2B seemed to be not influenced by hyperthyreosis in the fast muscles, whereas the hypothyreosis caused a decrease of its content. In the soleus muscle the MHC-2B was not detected in any groups of rats. The results suggest that the amount of each of the four MHC isoforms expressed in the mature rat leg muscles is influenced by the thyroid hormone in a different way. The MHC-2A and the MHC-2X are differently regulated in the soleus and in the fast muscles; thyroid hormone seems to be necessary for expression of those isoforms in the soleus muscle. 相似文献
20.
It was determined whether the content of NFATc1 (nuclear factor of activation of T cells) in the nuclear and cytoplasmic extracts is related to an increase in the content of fibers containing type IIa myosin heavy chains under gravitational unloading of m. soleus. It was found that three isoforms of NFATc1 with molecular masses of 140, 110, and 86 kDa are present in m. soleus. Under unloading, the translocation of 140 kDa NFATc1 into the nucleus, a decrease in the content of 110 kDa NFATc1 in the cytoplasmic extract of m. soleus, and an increase in the content of 86 kDa NFATc1 in the nuclear extract of m. soleus take place. The content of fibers containing type IIa myosin heavy chains under gravitational unloading increases. The increase in the level of 140 and 86 kDa NFATc1 in the nucleus is accompanied by a decrease in the percentage of fibers containing type I myosin heavy chains and an increase in the percentage of muscle fibers containing type IIa myosin heavy chains. 相似文献