首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mitochondrial outer membranes were prepared from mouse liver homogenates by swelling purified mitochondria in phosphate buffer and were purified on a discontinuous sucrose gradient. Assays for marker enzymes and controls in electron microscopy confirmed the purity and homogeneity of this subfraction. Mitochondrial outer membranes had significant galactosyltransferase activity when incubated with UDP-[14C]galactose: 14C-labelling was found in products extractable with organic solvents and in a residual precipitate. Addition of exogenous dolichylmonophosphate loaded into phosphatidylcholine liposomes strongly enhanced the incorporation of [14C]galactose into chloroform/methanol (2:1, v/v) -extractable products. Thin-layer chromatography of these 2:1 extracts showed that the increase of [14C]galactose incorporation was attributable to the synthesis of a new galactosylated lipid, 'lipid L'. This 'lipid L' has been purified on silicic acid columns by elution with chloroform/methanol (1:1, v/v). The purified 'lipid L' was labile in acid and released [14C]galactose. It had the same chromatographic behaviour as dolichylmonophosphate-mannose in neutral, acid and alkaline solvent systems. Upon incubation in presence of [3H]dolichylmonophosphate and UDP-[14C]galactose, purified 'lipid L' contained both 3H- and 14C-labelling. 'Lipid L', synthesized by mitochondrial outer membranes, was therefore characterized as dolichylmonophosphate-galactose.  相似文献   

2.
Proteolipid apoproteins have been prepared from heart, kidney, and liver by dialysis in chloroform/methanol against chloroform/methanol, acidified chloroform/methanol, and chloroform/methanol in succession. They are free of lipids (less than 0.05% P; less than 0.1% carbohydrate). They show a high content of non-polar amino acids, methionine, and tryptophan and contain little or no half-cystine. The differ from neural proteolipid apoproteins by absence of half-cystine, and of covalently bound fatty acids. As recovered from chloroform/methanol solutions, they are soluble in chloroform/methanol and insoluble in water, but a water-soluble form can be prepared by changing the solvent from chloroform/methanol to water in a stream of nitrogen. The chloroform-methanol-soluble form and the water-soluble form are interconvertible. ORD and CD spectra of all proteolipid apoproteins indicate 60-70% alpha-helix content in chloroform/methanol solution and 20-30% alpha-helix in water solution. Sodium dodecyl sulfate gel electrophoresis resolves proteolipid apoprotein into two major components corresponding to ca. 12 000 and 34 000 daltons. With sodium dodecyl sulfate/urea numerous bands appear, with a major one at 30 000 daltons and 8 to 10, ranging downward to 2500. For comparison, neural proteolipid apoproteins also show numerous bands with a major one at 25 000. The marked chemical and physical similarities among all proteolipid apoproteins studied suggest a common role in membrane structures.  相似文献   

3.
As chloroform has proved to be carcinogenic we were looking for an alternative solvent system for chloroform:methanol widely used in plant lipid investigations. The lipids from leaves of wheat ( Triticum aestivum L. cv. Vakka) and from protonemata of the moss Ceratodon purpureus (Hedw.) Brid. were extracted with two petroleum ether:methanol solvent systems. The polar lipids were separated by two-dimensional thin-layer chromatography and the amounts of each lipid class were compared with those obtained from chloroform:methanol (2:1, v/v) extractions. The significantly higher amounts of phosphatidylinositol observed in petroleum ether:methanol (1:1, v/v) extraction suggest that the small amounts reported earlier in plants may be an artefact relating to the solvent system used. As petroleum ether:methanol (1:1, v/v) proved to be at least as good a solvent system as chloroform:methanol (2:1, v/v) we propose it as an alternative extractant for plant polar lipids.  相似文献   

4.
Iron-binding lipids of rabbit duodenal brush-border membrane   总被引:2,自引:0,他引:2  
Rabbit duodenal brush-border membrane contains chloroform/methanol (2:1, v/v) extractable Fe-binding lipids (27.2 +/- 6.7 nmol/mg protein, mean +/- S.E. (n = 5)). Thin-layer chromatography in two solvent systems reveals that the major Fe-binding component(s) co-migrate with free fatty acids. Fe-binding by pure lipids reveals that phosphatidic acid, phosphatidylserine, oleic and stearic acids all show apparent Fe-binding in filtration assays, although oleic acid shows the highest apparent binding (5-10-fold) on a molar basis. The free fatty acid content of brush-border membrane vesicles is sufficient to account for the chloroform/methanol extractable Fe-binding observed in vesicle preparations. The pH dependence of Fe-binding by oleic acid is similar to that reported for the detergent extractable Fe-binding lipid which has been implicated in transport of Fe from Fe/ascorbate solutions by rabbit duodenal brush-border membrane vesicles (Simpson, R.J. and Peters, T.J. (1986) Biochim. Biophys. Acta 859, 227-236).  相似文献   

5.
This study aimed to develop a fluorometric method to determine total antioxidant activity of plant foods. The antioxidant activities in plant foods were determined after extracting (1) hydrophilic components with acidified methanol (methanol:glacial acetate acid:water=50:3.7:46.3), (2) lipophilic components with methanol followed by tetrahydrofuran (THF), or (3) both hydrophilic and lipophilic components using sequential extraction of acidified methanol and THF together. Both the hydrophilic assay [using the hydrophilic radical initiator 2,2'-azobis-(2-amidinopropane)dihydrochloride (10 mmol/L) and hydrophilic probe 2,7-dichlorodihydrofluorescein (DCFH)] and the lipophilic assay [using the lipophilic radical initiator [2,2'-azobis (4-methoxiy-2,4-dimethylvaleronitrile), 2 mmol/L], and the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY 581/591) (BODIPY: 2 micromol/L)] were used to measure antioxidant activity. The inhibition of BODIPY oxidation was significantly increased (P<.01) when both the hydrophilic and lipophilic components were extracted using acidified methanol and organic solvent as compared to those extracted by organic solvent alone. In addition, the rate of DCFH oxidation was significantly delayed (P<.05) when both components coexisted compared to DCFH oxidation of the hydrophilic component alone. The combination of lipophilic and hydrophilic components in these plant foods showed significantly greater antioxidant activity than that of either hydrophilic or lipophilic component alone. Thus, both hydrophilic and lipophilic components in plant foods and their interactions should be considered when determining their antioxidant activity.  相似文献   

6.
When freeze-dried brain was extracted at -4-0degrees C with dry chloroform/methanol (2:1 v/v), four of the five enzymes examined were recovered in the diethyl ether-washed residue without inactivation. By contrast, extraction with chloroform/methanol (2:1 v/v) in the presence of water destroyed activities of all the enzymes examined. The amounts of major lipids extracted were similar whether extraction was done in the absence or presence of water. The study was carried out with special interest in 2':3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37), which is firmly bound to the membrane structures of brain white matter.  相似文献   

7.
We have investigated the interactions between gramicidin and a model membrane composed of one phospholipid, dimyristoylphosphatidylcholine, as a function of the cosolubilization solvent and incubation time used in the sample preparation. Three organic solvents have been used; trifluoroethanol, a mixture of methanol/chloroform (1:1 v/v), and ethanol. Using Fourier transform infrared spectroscopy, we have demonstrated that the conformation adopted by gramicidin in the membrane is dependent upon the cosolubilization solvent used, and, only with trifluoroethanol, it is possible to incorporate gramicidin entirely as a beta 6.3-helix. Moreover, Raman spectroscopy results indicate that the orientation of the tryptophan side chains in gramicidin and their interaction with the hydrocarbon chains and the carbonyl groups of the lipids are also dependent on the cosolubilization solvent. On the other hand, the effect of the incorporation of gramicidin on the thermotropism of the lipid bilayer was found to be dependent upon the conformation of gramicidin in the lipid bilayers.  相似文献   

8.
1. 1. The structure of intracytoplasmic membranes of a photosynthetic bacterium Chromatium vinosum and a nitrogen-fixing bacterium Azotobacter vinelandii was studied by chemical modification of amino groups of phospatidylethanolamine and proteins with trinitrobenzensulfonate.
2. 2. Almost all the constituents of intracytoplasmic membranes of C. vinosum were solubilized in a mixture of chloroform, methanol and trichloroacetic acid. One-third of proteins in the intracytoplasmic membranes of C. vinosum was found solubilized in a mixture of chloroform and methanol. By using a column chromatography with Sephadex LH-20 in organic solvents, the unmodified as well as the trinitrophenylated proteins and also the trinitrophenylated phosphatidylethanolamine were separated from the other colored substances.
3. 3. In the chemical modification of the intracytoplasmic membrane preparations, 30% of phosphatidylethanolamine and 15% of protein amino groups in C. vinosum and 45% of phosphatidylethanolamine and 20% of protein amino groups in A. vinelandii were estimated to be exposed to the aqueous phase. In the single-layered liposomes composed of phosphatidylethanolamine and phospatidylglycerol with a ratio of 2:1, 40% of phosphatidylethanolamine were estimated to be exposed to the aqueous phase.
Abbreviations: N3Ph, trinitrophenylated  相似文献   

9.
Evidence for the glycoprotein nature of retina glycogen   总被引:3,自引:0,他引:3  
Incubation of a bovine retina membrane preparation with micromolar amounts of UDP-[14C]glucose resulted in the incorporation of [14C]glucose into endogenous (1----4)-alpha-glucan, insoluble in trichloroacetic acid, and acid-soluble ethanol-insoluble glycogen. The trichloroacetic-acid-insoluble glucan fraction of retina migrated in 2.6-3% acrylamide gels when subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and was rendered acid-soluble by digestion with pronase. The solubility of the acid-insoluble glucan in acidified organic solvent was different from that of amylose or glycogen and similar to membrane proteins and glycoproteins. The glycogen fraction of retina contained 1.5-2.0 micrograms protein/100 micrograms glucose. When this fraction was analyzed by SDS-PAGE only one band, which moved near the top of 3% acrylamide gels, was stained with periodic acid Schiff reagent and Coomassie blue. The protein nature of the Coomassie-blue-stainable material was demonstrated by iodination of the glycogen fraction with [131I]iodide and identification of labeled monoiodotyrosine and diiodotyrosine. The bulk of the label comigrated with carbohydrate near the top of gels in SDS-PAGE and treatment with alpha- amylse decreased the molecular size of both labeled and stainable material. Physical dissociative conditions (7.5 M urea/0.83% SDS/0.83% mercaptoethanol) and the following chemical treatments failed to dissociate the iodinated protein from glycogen: (a) 0.1 M NaOH/0.1 M NaBH4 at room temperature for 24 h; (b) 1 M HCl in methanol at 50 degrees C for 10 min; (c) trifluoroacetic acid at 50 degrees C for 6 min. 131I-labeled glycogenpeptide was isolated after 131I-labeled protein-bound glycogen had been subjected to digestion with papain/pronase and passed through a Sepharose column. The results suggest that at least part of glycogen in bovine retina is firmly combined to protein as a single proteoglycogen molecule. Furthermore some of the proteoglycogen might be present as a trichloroacetic-acid-precipitable proteoglucan owing to its lower glucose content.  相似文献   

10.
Cyclopentyl methyl ether (CPME) was evaluated for extracting oil or triacylglycerol (TAG) from wet cells of the oleaginous yeast Lipomyces starkeyi. CPME is a greener alternative to chloroform as a potential solvent for oil recovery. A monophasic system of CPME and biphasic system of CPME:water (1:0.7) performed poorly having the lowest TAG extraction efficiency and TAG selectivity compared to other monophasic systems of hexane and chloroform and the biphasic Bligh and Dyer method (chloroform:methanol:water). Biphasic systems of CPME:water:alcohol (methanol/ethanol/1‐propanol) were tested and methanol achieved the best oil extraction efficiency compared to ethanol and 1‐propanol. Different biphasic systems of CPME:methanol:water were tested, the best TAG extraction efficiency and TAG selectivity achieved was 9.9 mg/mL and 64.6%, respectively, using a starting ratio of 1:1.7:0.6 and a final ratio of 1:1:0.8 (CPME:methanol:water). Similar results were achieved for the Bligh and Dyer method (TAG extraction efficiency of 10.2 mg/mL and TAG selectivity of 66.0%) indicating that the biphasic CPME system was comparable. The fatty acid profile remained constant across all the solvent systems tested indicating that choice of solvent was not specific for any certain fatty acid. This study was able to demonstrate that CPME could be used as an alternative solvent for the extraction of oil from the wet biomass of oleaginous yeast. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1096–1103, 2017  相似文献   

11.
1. Proteolipid was extracted from the electric organ of Narke japonica by using chloroform/methanol (2:1, v/v). This extract was separated into acetylcholine-binding and non-binding substances by column chromatography. However, acetylcholine-binding substances did not show the characteristic properties of protein. 2. The membrane fragments of the electric organ were separated into three main parts by sucrose density gradient centrifugation. From the heaviest, the fractions were acetylcholine receptor rich, ATPase rich, and acetylcholinesterase rich. 3. The membrane fraction having acetylcholine receptor showed the excitability, the increase of Na+ permeability by the application of cholinergic agonists. However, the acetylcholine binding substance extracted by the organic solvent was richer in the lighter fraction. This substance differed from the true acetylcholine receptor.  相似文献   

12.
We have developed a reproducible and sensitive procedure for the isolation and measurement of choline, phosphocholine, glycerophosphocholine, phosphatidylcholine, lysophosphatidylcholine and acetylcholine in a single 100-mg sample of biological tissue. Tissues were spiked with 14C-methyl- and 2H-methyl- or 15N-choline labeled internal standards for each compound. They were extracted with chloroform/methanol/water and the aqueous and organic phases were dried. The organic phase was resuspended in chloroform/methanol (1/1, v/v) and an aliquot was applied to a silica-gel thin-layer chromatography plate. The plate was developed in chloroform/methanol/water (65/30/4, v/v). Segments which cochromatographed with external standards of phosphatidylcholine and lysophosphatidylcholine were stained, scraped, and hydrolyzed in 6 M methanolic-HCl at 80 degrees C for 60 min, liberating free choline. The aqueous phase was resuspended in methanol/water and injected onto a silica HPLC column. Choline and its metabolites were eluted using a binary nonlinear gradient of acetonitrile/ethanol/acetic acid/1 M ammonium acetate/water/0.1 M sodium phosphate (800/68/2/3/127/10, v/v changing to 400/68/44/88/400/10, v/v). Peaks were detected with an on-line radiometric detector, collected, and dried under vacuum. Each choline ester was digested in 6 M HCl at 80 degrees C to form choline. Choline was then converted to the propionyl ester and demethylated with sodium benzenethiolate. This volatile derivative was then isolated using gas chromatography and measured with a mass selective detector. Deuterated internal standards were used to correct for variations in recovery. Choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, lysophosphatidylcholine, and acetylcholine were measured in rat liver, heart, muscle, kidney, plasma, red blood cells, and brain and in human plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The colicin E1 immunity protein (ImmE1), a 13.2-kDa hydrophobic integral membrane protein localized in the Escherichia coli cytoplasmic membrane, protects the cell from the lethal, channel-forming activity of the bacteriocin, colicin E1. Utilizing its solubility in organic solvents, ImmE1 was purified by 1-butanol extraction of isolated membranes, followed by gel filtration and ion-exchange chromatography in a chloroform/methanol/H(2)O (4:4:1) solvent system. Circular dichroism analysis indicated that the alpha-helical content of ImmE1 is approximately 80% in 1-butanol or 2,2,2-trifluoroethanol, consistent with a previous membrane-folding model with three extended hydrophobic transmembrane helical domains, H1-H3. Each of these extended hydrophobic domains contains a centrally located single Cys residue that could be used as a probe of protein structure. The presence of tertiary structure of purified ImmE1 in a solvent of mixed polarity, chloroform/methanol/H(2)O (4:4:1) was demonstrated by (i) the constraints on Tyr residues shown by the amplitude of near-UV circular dichroism spectra in the wavelength interval, 270-285 nm; (ii) the correlation between the near-UV Tyr CD spectrum of single and double Cys-to-X mutants of the Imm protein and their in vivo activity; (iii) the upfield shift of methyl groups in a 1D NMR spectrum, a 2D- HSQC NMR spectrum of ImmE1 in the mixed polarity solvent mixture, and a broadening and disappearance of the indole (1)H proton resonance from Trp94 in H3 by a spin label attached to Cys16 in the H2 hydrophobic domain; (iv) near-UV circular dichroism spectra with a prominent ellipticity band centered at 290 nm from a single Trp inserted into the extended hydrophobic domains. It was concluded that the colicin E1 immunity protein adopts a folded conformation in chloroform/methanol/H(2)O (4:4:1) that is stabilized by helix-helix interactions. Analysis of the probable membrane folding topology indicated that several Tyr residues in the bilayer region of the three transmembrane helices could contribute to the near-UV CD spectrum through helix-helix interactions.  相似文献   

14.
Four categories of protein precipitation techniques (organic solvent, acid, salt and metal ion) were tested in plasma using spectrophotometry to assess protein removal efficiency across a range of volumes, species and lots. Acetonitrile, trichloroacetic acid (TCA) and zinc sulfate were found to be optimal at removing protein in their categories (>96, 92 and 91% protein precipitation efficiency at a 2:1 ratio of precipitant to plasma, respectively). A post-column infusion LC-MS/MS system was used to assess ionization effect of a protein-bound drug caused by the endogenous components remaining after using various protein precipitants. The extent of ionization effect varied with mobile phase (-20 to 93%), protein precipitant (0.3-86%), but only slightly with species (86-93%). The optimal bioanalytical methodologies for removal of plasma proteins and minimal ionization effect for the probe molecule in positive ion turboionspray LC-MS/MS involve the use of TCA for precipitation with mobile phases consisting of either pure organic solvents (methanol:water or acetonitrile:water) or precipitation with all of the mass spectrometer compatible precipitants evaluated with a methanol:aqueous 0.1% formic acid mobile phase.  相似文献   

15.
M Bouchard  J H Davis    M Auger 《Biophysical journal》1995,69(5):1933-1938
One- and two-dimensional solid-state 1H nuclear magnetic resonance spectra of gramicidin A incorporated in a dimyristoylphosphatidylcholine membrane have been obtained with use of high-speed magic angle spinning. By rotating the sample at 13 kHz, it is possible to observe signals in the 1H spectra between 6.0 and 9.0 ppm attributable to the aromatic protons of the tryptophan residues and the formyl group proton of gramicidin A. Two-dimensional solid-state COSY spectra provided information for the peak assignments. Moreover, changes in the 1H spectra have been observed as a function of the co-solubilization solvent initially used to prepare the samples and therefore as a function of the conformation adopted by gramicidin A. Three organic solvents have been used: trifluoroethanol, a mixture of methanol/chloroform (1:1 v/v), and ethanol. The conformational interconversion of gramicidin A from the double helix conformation to the channel structure for the sample prepared from ethanol was confirmed by following the time evolution of the proton spectra.  相似文献   

16.
Docosahexaenoic acid ethyl ester (DHA-Et) was purified by adsorption on Ag-ion-immobilized membranes via selective interaction between silver ion and carbon-carbon double bonds of DHA-Et. Silver ions were immobilized onto sulfonic-acid-group-containing porous hollow-fiber membranes at an Ag ion density of 1.4 mol/kg of membrane, and 30 membranes were housed in one module (inner diameter = 18 mm and effective length = 80 mm). The adsorption isotherms of DHA-Et in various organic solvents revealed that DHA-Et was adsorbed on the immobilized Ag ions with a DHA-Et/Ag ion molar binding ratio of 1/5 in methanol, and that acetonitrile was the solvent of choice for the elution of the adsorbed DHA-Et. Permeation of bonito oil ethyl ester solution in methanol through the Ag-ion-immobilized hollow-fiber membrane module demonstrated that the displacement adsorption of other lower unsaturated fatty-acid ethyl esters by DHA-Et proceeded along the membrane thickness. The purity of DHA-Et was improved to 99 wt % by permeating first bonito oil ethyl ester containing 95 wt % DHA-Et and then acetonitrile through the module.  相似文献   

17.
Mitochondria, and specially outer mitochondrial membranes, incorporate D-[14C]glucose from UDP-D-[14C]glucose into products extracted with organic solvents and into a residual precipitate, with a pH optimum of about 6.5 in (2-N-morpholino-ethane)-sulfonic acid (MES) buffer. The chloroform/methanol (2:1, v/v) extract contains two products. The major [14C]glucolipid is stable to mild alkali, but releases [14C]glucose upon mild acid hydrolysis. It is retained on DEAE-cellulose (acetate form) and is eluted with the same ionic strength as an hexosyldolichyl monophosphate diester. This [14C] glucolipid has the same chromatographic behaviour as dolichyl-mannosylphosphate in neutral, acidic and basic solvent systems; and its biosynthesis is greatly increased by exogenous dolichylmonophosphate. The other [14C]glucolipid is stable upon mild acid hydrolysis and is not retained on DEAE-cellulose. On silicic acid it is eluted with acetone. The biosynthesis of this compound is stimulated by exogenous ceramide. This glucolipid has the same chromatographic mobility in different solvent systems as glucosylceramide isolated from the liver of a patient with Gaucher's disease. Biosynthesis of these two glucolipids is inhibited by UDP, but only biosynthesis of dolichylglucosyl monophosphate is reversible with this nucleotide. The biosynthesis of these different glucosylated derivatives is stimulated by the addition of divalent cations (Mn2+, Mg2+). the effect of these two metal ions on dolichylglucosyl monophosphate and glucosylceramide formation is studied in different conditions.  相似文献   

18.
Hemolytic delta-toxin from Staphylococcus aureus was soluble in either water, methanol or chloroform/methanol (2 : 1, v/v). The toxin spread readily from distilled water into films with pressures (pi) of 10 dynes/cm on water and 30 dynes/cm on 6 M urea; from chloroform/methanol it produced 40 dynes/cm pressure on distilled water. The toxin adsorbed barely from water (pi = 1 dyne/ cm) but it did rapidly from 6 M urea (pi = 35 dynes/cm). The protein films had unusually high surface potentials, which increased with the film pressure and decreased with increasing both pH and urea concentration in the aqueous phase. The fluorescence of 1-aniline 8-naphthalene sulfonate with delta-toxin was much greater than that with RNAase and dipalmitoyl phosphatidylcholine itself, indicating probably a marked lipid-binding character of the toxin. By circular dichroism the alpha-helix content of delta-toxin was 42% in water, 45% in methanol, 24% in 6 M urea. Infrared spectroscopy showed predominant alpha-helix in both 2H2O and deuterated chloroform/methanol as well as in films spread from either solvent on 2H2O. In spreading from 6 M [2H]urea, in which the major infrared absorption was that of [2H]urea with peaks at 1600 and 1480 cm(-1), the delta-toxin film showed prevalently non-alpha-helix structures with major peak intensities at 1633 cm(-1) > 1680 cm(-1), indicating the appearance of new beta-aggregated and beta-antiparallel pleated sheet structures in the film. The data prove that (1) high pressure protein films can consist of alpha-helix as well as non-alpha-helix structures and, differently from another cytolytic protein, melittin, delta-toxin does not resume the alpha-helix conformation in going into the film phase from the extended chain in 6 M urea; (2) conformational changes are important in the transport of proteins from aqueous to lipid or membrane phase; (3) delta-toxin is by far more versatile in structural dynamics and more surface active than alpha-toxin.  相似文献   

19.
Highly glycosylated, water-soluble ABH-specific sphingolipids, designated macroglycolipids, were isolated in high yield, up to 5 mg per unit of blood, from the crude human-erythrocyte-membrane glycoprotein fraction which is obtained by extraction of the membranes with chloroform/methanol/water. Both serological tests and radioactive labelling experiments indicated that these substances, rather than the glycoproteins, are the principal ABH-components in this fraction. The activities of A-specific, B-specific and H-specific macroglycolipids were very high, approximately 0.1 microgram inhibiting four hemagglutinating doses of the respective agglutinating reagents, and were thus comparable to those of secreted blood-group ABH-specific glycoproteins. The substances were stable to mild alkaline conditions. They contained fucose, galactose, glucosamine, glucose, sialic acid, sphingosine and fatty acids; blood-group-A-specific substances contained, in addition, galactosamine. No amino acids were detected. Assuming one glycosyl residue per molecule, the average number of sugars in A and B macroglycolipids was 31, and their molecular weights approximately 6100. The presence of beta-D-galactosidase-labile and sialic acid residues indicated that these substances contain nonreducing termini additional to the ABH immunodeterminants. In the B macroglycolipid, the ratio between nonreducing terminal alpha-D-galactopyranosyl and beta-D-galactopyranosyl residues was 1.7:1.0. The macroglycolipids formed clear aqueous solutions at concentrations as high as 30 mg/ml, were insoluble in 60--70% aqueous ethanol, and did not migrate on thin-layer chromatography unless they were acetylated. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate showed the macroglycolipids to be a heterogeneous mixture migrating throughout most of the region in which the periodic acid/Schiff-positive membrane glycoproteins are found. On the basis of the evidence presented, it is concluded that macroglycolipids are the predominant ABH-specific component in human erythrocyte membranes, and that they most likely account for previous observations of ABH activity in membrane glycoprotein fractions.  相似文献   

20.
Docosahexaenoic acid (DHA, 22:6n-3), the most prevalent fatty acid in phospholipids of rod outer segments (ROS), is essential for visual transduction and daily renewal of ROS membranes. We investigated the association of [3H]DHA-lipids to rhodopsin in ROS from frogs (Rana pipiens) after in vitro (4 hrs) and in vivo (1 day and 32 days) labeling. Lipids from lyophilized ROS were sequentially extracted with hexane (neutral lipids), chloroform:methanol (phospholipids) and acidified chloroform:methanol (acidic phospholipids). After in vitro labeling, free [3H]DHA was easily extracted with hexane (66% of total ROS free DHA), implying a weak association with proteins (rhodopsin). In contrast, after in vivo labeling free [3H]DHA was mainly recovered in the acidic solvent extract (89–99%). Of all phospholipids, [3H-DHA]phosphatidic acid (PA) displayed the highest binding to rhodopsin after both in vitro (43% in acidic extract) and in vivo (>70%) labeling suggesting a possible modulatory role of free DHA and DHA-PA in visual transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号