共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhuoxiao Cao Akm Khyrul Wara Basak Icli Xinghui Sun René R. S. Packard Fehim Esen Christopher J. Stapleton Malayannan Subramaniam Karsten Kretschmer Irina Apostolou Harald von Boehmer G?ran K. Hansson Thomas C. Spelsberg Peter Libby Mark W. Feinberg 《The Journal of biological chemistry》2009,284(37):24914-24924
2.
Jimmy D. Dikeakos Katelyn M. Atkins Laurel Thomas Lori Emert-Sedlak In-Ja L. Byeon Jinwon Jung Jinwoo Ahn Matthew D. Wortman Ben Kukull Masumichi Saito Hirokazu Koizumi Danielle M. Williamson Masateru Hiyoshi Eric Barklis Masafumi Takiguchi Shinya Suzu Angela M. Gronenborn Thomas E. Smithgall Gary Thomas 《Molecular biology of the cell》2010,21(19):3279-3292
HIV-1 Nef triggers down-regulation of cell-surface MHC-I by assembling a Src family kinase (SFK)-ZAP-70/Syk-PI3K cascade. Here, we report that chemical disruption of the Nef-SFK interaction with the small molecule inhibitor 2c blocks assembly of the multi-kinase complex and represses HIV-1–mediated MHC-I down-regulation in primary CD4+ T-cells. 2c did not interfere with the PACS-2–dependent trafficking of Nef required for the Nef-SFK interaction or the AP-1 and PACS-1–dependent sequestering of internalized MHC-I, suggesting the inhibitor specifically interfered with the Nef-SFK interaction required for triggering MHC-I down-regulation. Transport studies revealed Nef directs a highly regulated program to down-regulate MHC-I in primary CD4+ T-cells. During the first two days after infection, Nef assembles the 2c-sensitive multi-kinase complex to trigger down-regulation of cell-surface MHC-I. By three days postinfection Nef switches to a stoichiometric mode that prevents surface delivery of newly synthesized MHC-I. Pharmacologic inhibition of the multi-kinase cascade prevents the Nef-dependent block in MHC-I transport, suggesting the signaling and stoichiometric modes are causally linked. Together, these studies resolve the seemingly controversial models that describe Nef-induced MHC-I down-regulation and provide new insights into the mechanism of Nef action. 相似文献
3.
Ravendra Garg Corinne Barat Michel Ouellet Robert Lodge Michel J. Tremblay 《PLoS neglected tropical diseases》2009,3(5)
Background
Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage.Methodology/Principal Findings
Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α.Conclusions/Significance
Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment. 相似文献4.
5.
The use of peptide libraries for the identification and characterization of T cell antigen peptide epitopes and mimotopes has been hampered by the need to form complexes between the peptides and an appropriate MHC molecule in order to construct a complete T cell ligand. We have developed a baculovirus-based peptide library method in which the sequence encoding the peptide is embedded within the genes for the MHC molecule in the viral DNA, such that insect cells infected with virus encoding a library of different peptides each displays a unique peptide–MHC complex on its surface. We have fished in such a library with two different fluorescent soluble T cell receptors (TCRs), one highly peptide specific and the other broadly allo-MHC specific and hypothesized to be much less focused on the peptide portion of the ligand. A single peptide sequence was selected by the former αβTCR that, not unexpectedly, was highly related to the immunizing peptide. As hypothesized, the other αβTCR selected a large family of peptides, related only by a similarity to the immunizing peptide at the p5 position. These findings have implications for the relative importance of peptide and MHC in TCR ligand recognition. This display method has broad applications in T cell epitope identification and manipulation and should be useful in general in studying interactions between complex proteins. 相似文献
6.
7.
Ming-Yi Lee Jian-Pei Huang Yi-Yung Chen John D. Aplin Yi-Hsin Wu Chia-Yu Chen Pei-Chun Chen Chie-Pein Chen 《PloS one》2009,4(10)
Human placental multipotent mesenchymal stromal cells (hPMSCs) can be isolated from term placenta, but their angiogenic ability and the regulatory pathways involved are not known. hPMSCs were shown to express integrins αv, α4, α5, β1, β3, and β5 and could be induced to differentiate into cells expressing endothelial markers. Increases in cell surface integrins α5 and β1, but not α4, αvβ3, or αvβ5, accompanied endothelial differentiation. Vascular endothelial growth factor-A augmented the effect of fibronectin in enhancing adhesion and migration of differentiated hPMSC through integrin α5β1, but not αvβ3 or αvβ5. Formation of capillary-like structures in vitro from differentiated cells was inhibited by pre-treatment with function-blocking antibodies to integrins α5 and β1. When hPMSCs were seeded onto chick chorioallantoic membranes (CAM), human von Willebrand factor-positive cells were observed to engraft in the chick endothelium. CAMs transplanted with differentiated hPMSCs had a greater number of vessels containing human cells and more incorporated cells per vessel compared to CAMs transplanted with undifferentiated hPMSCs, and overall angiogenesis was enhanced more by the differentiated cells. Function-blocking antibodies to integrins α5 and β1 inhibited angiogenesis in the CAM assay. These results suggest that differentiated hPMSCs may contribute to blood vessel formation, and this activity depends on integrin α5β1. 相似文献
8.
9.
Jayakumar Rajadas Wenchao Sun Hai Li Mohammed Inayathullah Damiano Cereghetti Aaron Tan Valeria de Mello Coelho Francis J. Chrest John W. Kusiak Wanli Wei Smith Dennis Taub Joseph C. Wu Joseph M. Rifkind 《PloS one》2013,8(3)
Amyloid accumulation in the brain of Alzheimer’s patients results from altered processing of the 39- to 43-amino acid amyloid β protein (Aβ). The mechanisms for the elevated amyloid (Aβ1–42) are considered to be over-expression of the amyloid precursor protein (APP), enhanced cleavage of APP to Aβ, and decreased clearance of Aβ from the central nervous system (CNS). We report herein studies of Aβ stimulated effects on endothelial cells. We observe an interesting and as yet unprecedented feedback effect involving Aβ1–42 fibril-induced synthesis of APP by Western blot analysis in the endothelial cell line Hep-1. We further observe an increase in the expression of Aβ1–40 by flow cytometry and fluorescence microscopy. This phenomenon is reproducible for cultures grown both in the presence and absence of serum. In the former case, flow cytometry reveals that Aβ1–40 accumulation is less pronounced than under serum-free conditions. Immunofluorescence staining further corroborates these observations. Cellular responses to fibrillar Aβ1–42 treatment involving eNOS upregulation and increased autophagy are also reported. 相似文献
10.
11.
Mohamed Elrefaei Candace M. Burke Chris A. R. Baker Norman G. Jones Stephanie Bousheri David R. Bangsberg Huyen Cao 《PloS one》2009,4(12)
Immune dysregulation in HIV-1 infection is associated with increased expression of inhibitory molecules such as CTLA-4, TGF-β, and IL-10. In this study we examined one potential mechanism for regulating TGF-β and IL-10 expression by HIV-specific suppressor CD8+ T cells. No overlap between TGF-β, IL-10, and IFN-γ cytokine production by HIV-specific CD8+ T cells was observed. TGF-β positive and IL-10 positive cells were FOXP3 negative, CD25 negative, and displayed a heterogeneous surface expression of CD127. TGF-β and IL-10 positive CD8+ T cells did not express CTLA-4. Nevertheless, CTLA-4 blockade resulted in a significant decrease in HIV-specific TGF-β positive and IL-10 positive CD8+ T cell responses, and a concomitant increase in HIV-specific IFN-γ positive CD8+ T cell responses. Depletion of CD4+ T cells abrogated the impact of CTLA-4 on HIV-specific TGF-β positive and IL-10 positive CD8+ T cells. Our study suggests that CTLA-4 Signaling on CD4+ T cells regulates the inhibitory functions of the HIV-specific suppressor CD8+ T cells. 相似文献
12.
Background
Regulatory T cells (Tregs) were shown to be central in maintaining immunological homeostasis and preventing the development of autoimmune diseases. Several subsets of Tregs have been identified to date; however, the dynamics of the interactions between these subsets, and their implications on their regulatory functions are yet to be elucidated.Methodology/Principal Findings
We employed a combination of mathematical modeling and frequent in vivo measurements of several T cell subsets. Healthy BALB/c mice received a single injection of either hCDR1 - a tolerogenic peptide previously shown to induce Tregs, a control peptide or vehicle alone, and were monitored for 16 days. During this period, splenocytes from the treated mice were analyzed for the levels of CD4, CD25, CD8, CD28 and Foxp3. The collected data were then fitted to mathematical models, in order to test competing hypotheses regarding the interactions between the followed T cell subsets. In all 3 treatment groups, a significant, lasting, non-random perturbation of the immune system could be observed. Our analysis predicted the emergence of functional CD4 Tregs based on inverse oscillations of the latter and CD4+CD25− cells. Furthermore, CD4 Tregs seemed to require a sufficiently high level of CD8 Tregs in order to become functional, while conversion was unlikely to be their major source. Our results indicated in addition that Foxp3 is not a sufficient marker for regulatory activity.Conclusions/Significance
In this work, we unraveled the dynamics of the interplay between CD4, CD8 Tregs and effector T cells, using, for the first time, a mathematical-mechanistic perspective in the analysis of Treg kinetics. Furthermore, the results obtained from this interdisciplinary approach supported the notion that CD4 Tregs need to interact with CD8 Tregs in order to become functional. Finally, we generated predictions regarding the time-dependent function of Tregs, which can be further tested empirically in future work. 相似文献13.
Fernando Gómez-Herreros Rocío Romero-Granados Zhihong Zeng Alejandro álvarez-Quilón Cristina Quintero Limei Ju Lieve Umans Liesbeth Vermeire Danny Huylebroeck Keith W. Caldecott Felipe Cortés-Ledesma 《PLoS genetics》2013,9(3)
Anticancer topoisomerase “poisons” exploit the break-and-rejoining mechanism of topoisomerase II (TOP2) to generate TOP2-linked DNA double-strand breaks (DSBs). This characteristic underlies the clinical efficacy of TOP2 poisons, but is also implicated in chromosomal translocations and genome instability associated with secondary, treatment-related, haematological malignancy. Despite this relevance for cancer therapy, the mechanistic aspects governing repair of TOP2-induced DSBs and the physiological consequences that absent or aberrant repair can have are still poorly understood. To address these deficits, we employed cells and mice lacking tyrosyl DNA phosphodiesterase 2 (TDP2), an enzyme that hydrolyses 5′-phosphotyrosyl bonds at TOP2-associated DSBs, and studied their response to TOP2 poisons. Our results demonstrate that TDP2 functions in non-homologous end-joining (NHEJ) and liberates DSB termini that are competent for ligation. Moreover, we show that the absence of TDP2 in cells impairs not only the capacity to repair TOP2-induced DSBs but also the accuracy of the process, thus compromising genome integrity. Most importantly, we find this TDP2-dependent NHEJ mechanism to be physiologically relevant, as Tdp2-deleted mice are sensitive to TOP2-induced damage, displaying marked lymphoid toxicity, severe intestinal damage, and increased genome instability in the bone marrow. Collectively, our data reveal TDP2-mediated error-free NHEJ as an efficient and accurate mechanism to repair TOP2-induced DSBs. Given the widespread use of TOP2 poisons in cancer chemotherapy, this raises the possibility of TDP2 being an important etiological factor in the response of tumours to this type of agent and in the development of treatment-related malignancy. 相似文献
14.
Teer Eman Joseph Danzil E. Dominick Leanne Glashoff Richard H. Essop M. Faadiel 《中国病毒学》2021,36(5):1133-1143
Virologica Sinica - Although antiretroviral treatment lowers the burden of human immunodeficiency virus (HIV)-related disease, it does not always result in immunological recovery. This manifests as... 相似文献
15.
Julian Wachstein Sabine Tischer Constanca Figueiredo Anne Limbourg Christine Falk Stephan Immenschuh Rainer Blasczyk Britta Eiz-Vesper 《PloS one》2012,7(12)
Human CD4+CD25+FoxP3+ T regulatory cells (Tregs) control effector T cells and play a central role in peripheral tolerance and immune homeostasis. Heat shock protein 70 (HSP70) is a major immunomodulatory molecule, but its effect on the functions of Tregs is not well understood. To investigate target-dependent and –independent Treg functions, we studied cytokine expression, regulation of proliferation and cytotoxicity after exposure of Tregs to HSP70. HSP70-treated Tregs significantly inhibited proliferation of CD4+CD25− target cells and downregulated the secretion of the proinflammatory cytokines IFN-γ and TNF-α. By contrast, HSP70 increased the secretion of Treg suppressor cytokines IL-10 and TGF-β. Treatment with HSP70 enhanced the cytotoxic properties of Tregs only to a minor extent (4-fold), but led to stronger responses in CD4+CD25− cells (42-fold). HSP70-induced modulation of T-cell responses was further enhanced by combined treatment with HSP70 plus IL-2. Treatment of Tregs with HSP70 led to phosphorylation of PI3K/AKT and the MAPKs JNK and p38, but not that of ERK1/2. Exposure of Tregs to specific inhibitors of PI3K/AKT and the MAPKs JNK and p38 reduced the immunosuppressive function of HSP70-treated Tregs as indicated by the modified secretion of specific target cell (IFN-γ, TNF-α) and suppressor cytokines (IL-10, TGF-β). Taken together, the data show that HSP70 enhances the suppressive capacity of Tregs to neutralize target immune cells. Thus HSP70-enhanced suppression of Tregs may prevent exaggerated immune responses and may play a major role in maintaining immune homeostasis. 相似文献
16.
Yang Yang Min Wang Bingjie Lv Rong Ma Jing Hu Yaoyan Dun Shenggang Sun Gang Li 《Neurochemical research》2014,39(5):932-940
Although the etiology of Alzheimer’s disease (AD) is not fully understood, multiple lines of evidence suggests the importance of amyloid-β (Aβ) in the initiation/progression of the disease. Aβ has been shown to induce neuronal apoptosis via the sphingomyelin/ceramide pathway. This study was designed to elucidate whether the sphingosine kinase-1 (SPK1), a critical regulator of the ceramide/sphingosine 1-phosphate rheostat, plays a pivotal role in the regulation of death and survival of differentiated neuro-2a cells in response to beta-amyloid peptide fragment 25–35 (Aβ25–35). These results show that the expression of SPK1 was markedly decreased in Aβ25–35-induced neurotoxicity, as evidenced by the decreased cell viability and the increased apoptotic rate. Overexpression of SPK1 significantly attenuated Aβ25–35-induced neurotoxicity, whereas silencing the expression of SPK1 exacerbated it. Moreover, overexpression of SPK1 can significantly attenuate Aβ25–35-induced upregulation of Bax and rehabilitate the level of Bcl-2; concomitantly, it can ameliorate mitochondrial ultrastructure. These studies demonstrate that overexpression of SPK1 may moderate Aβ25–35-induced neurotoxicity by regulating the Bcl-2/Bax ratio and improving mitochondrial ultrastructure. Based on these findings, SPK1 is a potential therapeutic target for AD. 相似文献
17.
Anja Scholzen Diana Mittag Stephen J. Rogerson Brian M. Cooke Magdalena Plebanski 《PLoS pathogens》2009,5(8)
CD4+CD25+Foxp3+ regulatory T cells (Tregs) regulate disease-associated immunity and excessive inflammatory responses, and numbers of CD4+CD25+Foxp3+ Tregs are increased during malaria infection. The mechanisms governing their generation, however, remain to be elucidated. In this study we investigated the role of commonly accepted factors for Foxp3 induction, TCR stimulation and cytokines such as IL-2, TGFβ and IL-10, in the generation of human CD4+CD25+Foxp3+ T cells by the malaria parasite Plasmodium falciparum. Using a co-culture system of malaria-infected red blood cells (iRBCs) and peripheral blood mononuclear cells from healthy individuals, we found that two populations of Foxp3hi and Foxp3int CD4+CD25hi T cells with a typical Treg phenotype (CTLA-4+, CD127low, CD39+, ICOS+, TNFRII+) were induced. Pro-inflammatory cytokine production was confined to the Foxp3int subset (IFNγ, IL-4 and IL-17) and inversely correlated with high relative levels of Foxp3hi cells, consistent with Foxp3hi CD4 T cell–mediated inhibition of parasite-induced effector cytokine T cell responses. Both Foxp3hi and Foxp3int cells were derived primarily from proliferating CD4+CD25− T cells with a further significant contribution from CD25+Foxp3+ natural Treg cells to the generation of the Foxp3hi subset. Generation of Foxp3hi, but not Foxp3int, cells specifically required TGFβ1 and IL-10. Add-back experiments showed that monocytes expressing increased levels of co-stimulatory molecules were sufficient for iRBC-mediated induction of Foxp3 in CD4 T cells. Foxp3 induction was driven by IL-2 from CD4 T cells stimulated in an MHC class II–dependent manner. However, transwell separation experiments showed that direct contact of monocytes with the cells that acquire Foxp3 expression was not required. This novel TCR-independent and therefore antigen-non specific mechanism for by-stander CD4+CD25hiFoxp3+ cell induction is likely to reflect a process also occurring in vivo as a consequence of immune activation during malaria infection, and potentially a range of other infectious diseases. 相似文献
18.
Luc Van Kaer Whitney A. S. Rabacal Holly M. Scott Algood Vrajesh V. Parekh Danyvid Olivares-Villagómez 《PloS one》2013,8(7)
In vitro CD4+ T cell differentiation systems have made important contributions to understanding the mechanisms underlying the differentiation of naive CD4+ T cells into effector cells with distinct biological functions. Mature CD4+ T cells expressing CD8αα homodimers are primarily found in the intestinal mucosa of men and mice, and to a lesser extent in other tissues such as peripheral blood. Although CD4+CD8α+ T cells are easily identified, very little is known about their development and immunological functions. It has been reported, however, that CD4+CD8α+ T cells possess regulatory properties. In this report, we present a novel in vitro differentiation system where CD4+ T cells are stimulated to become CD4+CD8α+ T cells in the presence of TGF-β, IL-7 and IFN-γ, resulting in cells with very similar features as CD4+CD8α+ intraepithelial lymphocytes. This novel in vitro differentiation culture should provide a powerful and tractable tool for dissecting the differentiation and biological functions of CD4+CD8α+ T cells. 相似文献
19.