首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
RNA subunit structure of Mason-Pfizer monkey virus.   总被引:1,自引:7,他引:1       下载免费PDF全文
Mason-Pfizer monkey virus 60-70S RNA has a molecular weight of 8 times 10-6 when analyzed on polyacrylamide gels. Dissociation of 60-70S RNA of Mason-Pfizer monkey virus and murine leukemia virus by heat or formamide (40%) resulted in conversion to identical subunit structures of 2.8 times 10-6 daltons; treatment with lower amounts of formamide revealed a partial dissociation of Mason-Pfizer monkey virus 60-70S RNA released three low-molecular-weight RNA species of 10-5, 3,5 times 10-4, and 2.5 times 10-4.  相似文献   

2.
The Mason-Pfizer monkey virus (MPMV) genome contains a cis-acting element that serves to facilitate nucleocytoplasmic export of intron-containing RNA. This element, known as the constitutive transport element (CTE), has been mapped to a 154-nt region close to the 3' end of the MPMV genome. The CTE contains a degenerate direct repeat of approximately 70 nt. We have probed the secondary structure of the CTE using double-strand- and single-strand-specific ribonucleases and chemical modification agents. A mutational analysis was also performed to confirm critical features of the CTE structure, as well as to identify regions that contain sequence-specific information required for function. Our results indicate that the CTE forms a long stem structure that contains a 9-nt terminal hairpin loop as well as two identical 16-nt inner loops. The inner loop sequences are rotated 180 degrees relative to each other within the structure. The mutational analysis shows that primary sequences in the loop regions are important for function, suggesting that they may contain binding sites for cellular proteins involved in RNA export. Interestingly, sequences with significant homology to the inner loop regions are found in the genomes of spumaviruses and mouse intracisternal A particles.  相似文献   

3.
The genome of the defective, murine spleen focus-forming Friend virus (SFFV) was identified as a 50S RNA complex consisting of 32S RNA monomers. Electrophoretic mobility and the molecular weights of unique RNase T1-resistant oligonucleotides (T1-oligonucleotides) indicated that the 32S RNA had a complexity of about 7.4 kilobases. Hybridization with DNA complementary to Friend murine leukemia virus (Fr-MLV) has distinguished two sets of nucleotide sequences in 32S SFFV RNA, 74% which were Fr-MLV related and 26% which were SFFV specific. By the same method, SFFV RNA was 48% related to Moloney MLV. We have resolved 23 large T1-oligonucleotides of SFFV RNA and 43 of Fr-MLV RNA. On the basis of the relationship between SFFV and Fr-MLV RNAs, the 23 SFFV oligonucleotides fell into four classes: (i) seven which had homologous equivalents in Fr-MLV RNA; (ii) six more which could be isolated from SFFV RNA-Fr-MLV cDNA hybrids treated with RNases A and T1; (iii) eight more which were isolated from hybrids treated with RNases A and T1; and (iv) two which did not have Fr-MLV-related counterparts. Surprisingly, the two class iv oligonucleotides had homologous counterparts in the RNA of six amphotropic MLV's including mink cell focus-forming and HIX-MLVs analyzed previously. The map locations of the 23 SFFV T1-oligonucleotides relative to the 3' polyadenylic acid coordinate of SFFV RNA were deduced from the size of the smallest polyadenylic acid-tagged RNA fragment from which a given oligonucleotide was isolated. The resulting oligonucleotide map could be divided roughly into three segments: two terminal segments which are mosaics of oligonucleotides of classes i, ii, and iii and an internal segment between 2 and 2.5 kilobases from the 3' end containing the two oligonucleotides shared with amphotropic MLVs. Since SFFV RNA consists predominantly of sequence elements related to ecotropic and amphotropic helper-independent MLVs, it would appear that the transforming gene of SFFV is not a major specific sequence unrelated to genes of helper viruses, as is the case with Rous sarcoma and probably withe other defective sarcoma and acute leukemia viruses.  相似文献   

4.
5.
Twelve isolates of beet necrotic yellow vein virus, agent of rhizomania in sugar beet, have been obtained from five European countries and the USA. The isolates were cloned and multiplied in the local lesion host Chenopodium quinoa. By ELISA, a close serological relationship was observed among all the isolates. The isolates differed, however, in the number of viral RNA species present (2, 3 or 4) and in the lengths of RNAs 3 and 4, the two smallest RNAs. A comparison of the symptoms induced by the different isolates in C. quinoa revealed a correlation between the presence of a full-length RNA 3 (about 1850 nucleotides) and the appearance of severe chlorotic local lesions.  相似文献   

6.
It was shown that all eight RNA segments of influenza B viruses are most likely monocistronic and code for eight virus-specific polypeptides. A genetic map of the influenza B virus genome was established, and six polypeptides (P1 protein, nucleoprotein, hemagglutinin, neuraminidase, M protein, and nonstructural protein) were unambiguously assigned to specific RNA segments. Molecular weight estimates of the eight individual genes are obtained by using the glyoxal method. These results suggest that each influenza B virus RNA segment has a greater molecular weight than the influenza A virus RNA segment which codes for the analogous gene product.  相似文献   

7.
RNA virus genomes hybridize to cellular rRNAs and to each other.   总被引:9,自引:1,他引:8       下载免费PDF全文
In this communication we show that the RNA genomes of vesicular stomatitis, Sindbis, and reoviruses can specifically hybridize under stringent conditions to the large rRNAs present in HeLa cell cytoplasmic extracts. In addition, we show that some virus genome RNAs can also hybridize to each other. On the basis of our previous detailed studies identifying specific regions of hybridization between the poliovirus genome and 28S rRNA, we suggest that a similar phenomenon of "patchy complementary" may be responsible for the interactions described here (M. A. McClure and J. Perrault, Nucleic Acids Res. 13:6797-6816, 1985). The possible biological implications of these cross-reacting hybridizations and practical considerations in the use of viral probes for diagnosis are discussed.  相似文献   

8.
Fan-shaped, naked amoebae are commonly encountered in samples from freshwater and marine habitats suggesting that they are an important component of the microbial food web. However, there are considerable problems in both detecting these amoebae and identifying them, given their morphological similarity. In this study we used restriction analysis and partial sequence analysis of the small-subunit 18S ribosomal RNA gene to examine the phylogenetic relationships between nine "fan-shaped" Vannella and Platyamoeba species. The molecular phylogeny showed that the marine Vannella and Platyamoeba isolates are closely related, whereas the freshwater isolates are disparate. Thus, the current reliance on the fine structure of the cell coat (glycocalyx) used to separate these genera is not justified. The study also highlights sequence elements that might be targeted by fluorescent probes for the direct detection of these amoebae in field samples. The molecular data were also used to aid the identification of three unknown fan-shaped isolates. All three unknowns resembled Vannella or Platyamoeba. However, one of the strains (a small < 10 microm, benthic, fan-shaped amoeba) probably represents a new genus.  相似文献   

9.
Three morphologically similar isolates of Duddingtonia flagrans [(Duddington) R. C. Cooke] viz., Df-2550, Df-2507 and Df-BJ were subjected to RAPD (Randomly Amplified Polymorphic DNA) and SRFA (Selective Fragment Length Amplification) mode of DNA fingerprinting analysis to generate 233 different anonymous DNA markers. Mean number of alleles per primer/primer pair for RAPD and SRFA primers was 13.75 and 29.66 respectively. Phylogenetic analysis through bootstrapping of 1000 simulated replicates of the data set demonstrated that Df-2550 was ancestral in the group of three and did not align with Df-2507 and Df-BJ, which appeared to diversify recently and therefore remained at the end of the phylogenetic tree. Genomic islands were also identified by three SRFA primer pairs, where Df-2550 aligned with Df-BJ, which is reverse to the master consensus-grouping pattern. Scanning image of the amplicon profiles when represented graphically generated unique molecular signature for the isolates.  相似文献   

10.
Monoclonal antibodies directed against the capsid protein of rabbit hemorrhagic disease virus (RHDV) were used to identify field cases of European brown hare syndrome (EBHS) and to distinguish between RHDV and the virus responsible for EBHS. Western blot (immunoblot) analysis of liver extract of an EBHS virus (EBHSV)-infected hare revealed a single major capsid protein species of approximately 60 kDa that shared epitopes with the capsid protein of RHDV. RNA isolated from the liver of an EBHSV-infected hare contained two viral RNA species of 7.5 and 2.2 kb that comigrated with the genomic and subgenomic RNAs of RHDV and were recognized by labeled RHDV cDNA in Northern (RNA) hybridizations. The nucleotide sequence of the 3' 2.8 kb of the EBHSV genome was determined from four overlapping cDNA clones. Sequence analysis revealed an open reading frame that contains part of the putative RNA polymerase gene and the complete capsid protein gene. This particular genome organization is shared by RHDV but not by other known caliciviruses. The deduced amino acid sequence of the capsid protein of EBHSV was compared with the capsid protein sequences of RDDV and other caliciviruses. The amino acid sequence comparisons revealed that EBHSV is closely related to RHDV and distantly related to other caliciviruses. On the basis of their genome organization, it is suggested that caliciviruses be divided into three groups.  相似文献   

11.
12.
George J  Raju R 《Journal of virology》2000,74(20):9776-9785
The 3' nontranslated region of the genomes of Sindbis virus (SIN) and other alphaviruses carries several repeat sequence elements (RSEs) as well as a 19-nucleotide (nt) conserved sequence element (3'CSE). The 3'CSE and the adjoining poly(A) tail of the SIN genome are thought to act as viral promoters for negative-sense RNA synthesis and genome replication. Eight different SIN isolates that carry altered 3'CSEs were studied in detail to evaluate the role of the 3'CSE in genome replication. The salient findings of this study as it applies to SIN infection of BHK cells are as follows: i) the classical 19-nt 3'CSE of the SIN genome is not essential for genome replication, long-term stability, or packaging; ii) compensatory amino acid or nucleotide changes within the SIN genomes are not required to counteract base changes in the 3' terminal motifs of the SIN genome; iii) the 5' 1-kb regions of all SIN genomes, regardless of the differences in 3' terminal motifs, do not undergo any base changes even after 18 passages; iv) although extensive addition of AU-rich motifs occurs in the SIN genomes carrying defective 3'CSE, these are not essential for genome viability or function; and v) the newly added AU-rich motifs are composed predominantly of RSEs. These findings are consistent with the idea that the 3' terminal AU-rich motifs of the SIN genomes do not bind directly to the viral polymerase and that cellular proteins with broad AU-rich binding specificity may mediate this interaction. In addition to the classical 3'CSE, other RNA motifs located elsewhere in the SIN genome must play a major role in template selection by the SIN RNA polymerase.  相似文献   

13.
The polypeptide composition of Mason-Pfizer monkey virus was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Six major polypeptides of molecular weights 68,000, 27,000, 20,000, 14,000, 12,000, and 10,000 were resolved regardless of the cell type (i.e., two human and two rhesus) in which the virus was grown. Protein gp68 (68,000) represented the major virus glycoprotein and protein gp20 (20,000) represented a minor glycoprotein of the virion, again regardless of the cell type of origin of the virus. Protein gp68 appears to be located on the outer surface of the viral envelope, as demonstrated by lactoperoxidase catalyzed iodination of intact virions. Additional glycoproteins were shown to be virion associated; their presence depended, however, on the cell type in which the virus was propagated.  相似文献   

14.
15.
16.
Viral diseases severely affect crop yield and quality, thereby threatening global food security. Genetic improvement of plant virus resistance is essential for sustainable agriculture. In the last decades, several modern technologies were applied in plant antiviral engineering. Here we summarized breakthroughs of the two major antiviral strategies, RNA silencing and genome editing. RNA silencing strategy has been used in antiviral breeding for more than thirty years, and many crops engineered to stably express small RNAs targeting various viruses have been approved for commercial release. Genome editing technology has emerged in the past decade, especially CRISPR/Cas, which provides new methods for genetic improvement of plant virus resistance and accelerates resistance breeding. Finally, we discuss the potential of these technologies for breeding crops, and the challenges and solutions they may face in the future.  相似文献   

17.
Restriction enzyme sites on the avian RNA tumor virus genome.   总被引:22,自引:12,他引:10       下载免费PDF全文
J M Taylor  T W Hsu    M M Lai 《Journal of virology》1978,26(2):479-484
  相似文献   

18.
The status of the taxa morphologically similar to Pluteus eugraptus (Basidiomycota, Agaricales) was investigated with morphological and molecular (ITS region) characters. This group of species belongs in Pluteus sect. Celluloderma based on morphological and molecular characters. Two species, Pluteus multiformis, from Spain and Pluteus eludens from Madeira, Portugal, Russia and USA, are described as new. Both species share pigmented cheilocystidia and a pileipellis composed of both clavate-spheropedunculate and elongated elements with P. eugraptus, but they can be separated based on the characteristics of the cystidia and pileipellis. Pluteus multiformis is characterized by the scarce pleurocystidia, clavate cheilocystidia and caulocystidia and highly polymorphic elements of the pileipellis. Pluteus eludens is characterized mainly by utriform pleurocystidia. Pluteus eugraptus is known only with certainty from the type collection (Sri Lanka), which has been re-examined here, and it is characterized by narrowly lageniform pleurocystidia. Phylogenetic analyses based on ITS region sequence data supported the separation of P. multiformis, P. eludens and an additional collection from Japan that likely represents the true P. eugraptus.  相似文献   

19.
E V Jones  C Puckett    B Moss 《Journal of virology》1987,61(6):1765-1771
Antiserum to a multisubunit DNA-dependent RNA polymerase from vaccinia virions was prepared to carry out genetic studies. This antiserum selectively inhibited the activity of the viral polymerase but had no effect on calf thymus RNA polymerase II. The specificity of the antiserum was further demonstrated by immunoprecipitation of RNA polymerase subunits from dissociated virus particles. The presence in vaccinia virus-infected cells of mRNA that encodes the polymerase subunits was determined by in vitro translation. Immunoprecipitable polypeptides with Mrs of about 135,000, 128,000, 36,000, 34,000, 31,000, 23,000, 21,000, 20,000, and 17,000 were made when early mRNA was added to reticulocyte extracts. The subunits were encoded within the vaccinia virus genome, as demonstrated by translation of early mRNA that hybridized to vaccinia virus DNA. The locations of the subunit genes were determined initially by hybridization of RNA to a series of overlapping 40-kilobase-pair DNA fragments that were cloned in a cosmid vector. Further mapping was achieved with cloned HindIII restriction fragments. Results of these studies indicated that RNA polymerase subunit genes are transcribed early in infection and are distributed within the highly conserved central portion of the poxvirus genome in HindIII fragments E, J, H, D, and A.  相似文献   

20.
We have generated lymphocytic choriomeningitis virus-specific, H-2-restricted cytotoxic thymus-derived lymphocyte (CTL) clones. By using these reagents in several in vitro assays with infected target cells, we show that CTLs by themselves prevent the release of infectious virus into culture fluids and significantly lower the titers of infectious virus previously produced. This ability of cloned CTLs is not influenced by monensin. However, monensin does abrogate the ability of CTLs from spleens of mice primed 6 to 8 days previously with virus to kill virus-infected syngeneic targets. When tested for the participation of lymphokines in this system, the CTLs proliferate when reacted with syngeneic lymphocytic choriomeningitis virus-infected macrophages but fail to make interleukin-2. These CTLs make gamma interferon when reacted with syngeneic virus-infected targets. However, the production of interferon does not directly correlate with CTL-mediated killing. The number of H-2K and D molecules expressed on the target cell surface is not altered during the course of lymphocytic choriomeningitis virus infection. Electron microscopy shows finger-like projections of the CTL clone thrust into the infected cell and lesions bearing an internal diameter of approximately 15 nm in those membranes, illustrating the lytic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号