首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endo-beta-glucanase I (EGI) of Trichoderma reesei was produced in laboratory and pilot scale using recombinant strains of "bottom-fermenting" Saccharomyces cerevisiae. The gene eg/1 was integrated in the chromosome or an expression cassette was inserted on a multicopy plasmid. Expression levels were compared in a laboratory scale bioreactor. The best EGI-producing strain was cultivated in pilot scale. Adsorbent treatment was used to remove endogenous yeast proteins and other impurities from the culture filtrate during concentration. Effective pilot scale one-step purification of the EGI protein was obtained using DEAE-Sepharose, on which EGI was weakly bound. The purified enzyme reacted with antibodies prepared against T. reesei EGI and catalyzed the hydrolysis of both insoluble and soluble substrates.  相似文献   

2.
Plasma protein fractionation with advanced membrane adsorbents   总被引:1,自引:0,他引:1  
High capacity membrane adsorbents have been used as a stationary phase for the preparative chromatographic purification of human serum albumin. A two-step ion exchange fractionation scheme yields albumin with 98% purity from clarified, microfiltrated, and desalted human plasma. Experiments with laboratory and pilot scale membrane modules are compared to literature data obtained with conventional Fast Flow Sepharose in a similar purification protocol. Increased productivity in combination with excellent reproducibility and stability was found using the membrane adsorbents. Scale-up of the process based on standard microfiltration equipment was successful but resulted in reduced capacity and productivity due to deteriorated flow characteristics of the module. This was attributed to the effects of substantial axial dispersion in the pilot scale module. Methods to reduce this limitation were identified. The concept of membrane adsorption chromatography for the fast purification of proteins is illustrated and engineering aspects important for the process design are discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 181-189, 1997.  相似文献   

3.
This work investigates the utility of RPLC displacement chromatography for the purification of recombinant brain derived neurotrophic factor (rHu-BDNF) from its variants and E. coli. protein (ECP) impurities. The closely associated variants (six in total) differ by one amino acid from the native BDNF and thus pose a challenging separation problem. Several operational parameters were investigated to study their effects on the yield of the displacement process. The results indicated that the concentration of trifluoroacetic acid (TFA) in the buffer was a key factor in achieving the desired purification. Displacement chromatography on an analytical scale column resulted in extremely high purity and yield in a single chromatographic step. The process was successfully scaled-up with respect to particle and column diameter. The production rate of a pilot scale RPLC displacement process was shown to be 23 times higher than the combined production rates of the current preparative ion exchange and hydrophobic interaction gradient elution steps that are used to remove variant and ECP impurities, respectively.  相似文献   

4.
Many recombinant proteins (rPRTs) have a high bioactivity and some of them may eventually be classified as drugs beneficial to human health, recombinant human protein drugs (rPDs). rPDs are a high-technology product with all the associated economic benefits, therefore the liquid chromatography (LC) of rPRT is different from that of proteins isolated in laboratory scale for purely research purposes. The design of a purification scheme for an rPRT depends on the intended function of the purified rPRT, as a pure sample for research in small scale, or as a product for industrial production. This review paper mainly deals with the latter instance, producing rPD at a large scale. Pharmaceutical economics is considered not only for each step of purification, but also the whole production process. This strategy restricts the content of this review paper to the factors affecting the optimization source, the character of rPRT in up-stream technology and the purification of the rPRT in down-stream production. In the latter instance, the purification step is required to be as efficient as possible and LC is the core of the refined purification method, which is either a single LC method or combination of LC methods, sometimes, it may be a combination of LC and other non-LC separation methods comprising an optimized purification technology. Here some typical examples of rPRT purification at the large scale, recent developments, such as protein folding liquid chromatography, short column chromatography, and new packing material and column techniques are introduced.  相似文献   

5.
A high-throughput protein purification strategy using the polycationic Z(basic) tag has been developed. In order for the strategy to be useful both for soluble and less soluble proteins, a denaturating agent, urea, was used in all purification steps. First, four target proteins were genetically fused to the purification tag, Z(basic). These protein constructs were purified by cation exchange chromatography and eluted using a salt gradient. From the data achieved, a purification strategy was planned including stepwise elution to enable parallel protein purification using a laboratory robot. A protocol that includes all steps, equilibration of the chromatography resin, load of sample, wash, and elution, all without any manual handling steps, was handled by the laboratory robot. The program allows automated purification giving milligram amounts of pure recombinant protein of up to 60 cell lysates. In this study 22 different protein constructs, with different characteristics regarding pI and solubility, were successfully purified by the laboratory robot. The data show that Z(basic) can be used as a general purification tag also under denaturating conditions. Moreover, the strategy enables purification of proteins with different pI and solubility using ion exchange chromatography (IEXC). The procedure is highly reproducible and allows for high protein yield and purity and is therefore a good complement to the commonly used His(6)-tag.  相似文献   

6.
Rotavirus like particles (RLPs) constitute a potential vaccine for the prevention of rotavirus disease, responsible for the death of more than half a million children each year. Increasing demands for pre-clinical trials material require the development of reproducible, scaleable and cost-effective purification strategies as alternatives to the traditional laboratory scale CsCl density gradient ultracentrifugation methods commonly used for the purification of these complex particles. Self-assembled virus like particles (VLPs) composed by VP2, VP6 and VP7 rotavirus proteins (VLPs 2/6/7) were produced in 5l scale using the insect cells/baculovirus expression system. A purification process using depth filtration, ultrafiltration and size exclusion chromatography as stepwise unit operations was developed. Removal of non-assembled rotavirus proteins, concurrently formed particles (RLP 2/6), particle aggregates and products of particle degradation due to shear was achieved. Particle stability during storage was studied and assessed using size exclusion chromatography as an analytical tool. Formulations containing either glycerol (10% v/v) or trehalose (0.5 M) were able to maintain 75% of intact triple layered VLPs, at 4 degrees C, up to 4 months. The overall recovery yield was 37% with removal of 95% of host cell proteins and 99% of the host cell DNA, constituting a promising strategy for the downstream processing of other VLPs.  相似文献   

7.
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:974–982, 2015  相似文献   

8.
Two different recombinant human proteins were purified directly from Pichia pastoris whole cell fermentation broth, containing 30–44% biomass (wet weight percent), by strong cation exchange expanded bed adsorption chromatography. Expanded bed adsorption chromatography provided clarification, product purification and product concentration in a single unit operation at large scale (2000-l nominal fermentation volume). The efficiency of expanded bed adsorption chromatography resulted in a short process time, high process yield, and limited proteolytic degradation of the target proteins. The separations were operated using a 60-cm (d) column run at 14 l/min. For one protein, expanded bed adsorption chromatography resulted in an average product recovery of 113% (relative to fermentation supernatant) and a purity of 89% (n=10). For the other protein, the average product recovery was 99% (relative to fermentation supernatant) and the purity was 62.1 (n=10). Laboratory experiments showed that biomass reduced product dynamic binding capacity for protein 2.  相似文献   

9.
A process for the purification of recombinant human angiostatin (rhAngiostatin), produced by Pichia pastoris fermentation operated at the 2000-L scale, is reported. rhAngiostatin was recovered and purified directly from crude fermentation broth by cation exchange expanded bed adsorption chromatography. Anion exchange chromatography, hydroxyapatite chromatography, and hydrophobic interaction chromatography were used for further purification. Full-length rhAngiostatin was separated from rhAngiostatin molecules fragmented by endoproteolysis. On average, 140 g of rhAngiostatin was produced per batch, with an overall yield of 59% (n = 9). The purification process was completed in approximately 48 h and used only inexpensive and nontoxic raw materials. Methods development, process synthesis, and process scale-up data are presented and discussed.  相似文献   

10.
Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.  相似文献   

11.
A recombinant C-terminus heavy chain fragment from botulinum neurotoxin serotype E (BoNT/E) is proposed as a vaccine against the serotype E neurotoxin. This fragment, rBoNTE(Hc), was produced intracellular in Pichia pastoris GS115 by a three-step fermentation process, i.e., glycerol batch phase and a glycerol fed-batch phase to achieve high cell densities, followed by a methanol fed-batch induction phase. The rBoNTE(Hc) protein was purified from the soluble fraction of cell lysates using three ion-exchange chromatography steps (SP Sepharose Fast Flow, Q Sepharose Fast Flow, Sp Sepharose High Performance) and polished with a hydrophobic charge induction chromatography step (MEP HyperCel). Method development at the bench scale was achieved using 7-380 mL columns and the process was performed at the pilot scale using 0.5-3.1 L columns in preparation for technology transfer to cGMP manufacturing. The purification process resulted in greater than 98% pure rBoNTE(Hc) based on HPLC and yielded up to 1.01g of rBoNTE(Hc)/kg cells at the bench scale and 580mg vaccine/kg cells at the pilot scale. N-terminal sequencing showed that the purified rBoNTE(Hc) N-terminus is intact and was found to protect mice against a challenge of 1000 mouse intraperitoneal LD50's of BoNT/E.  相似文献   

12.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

13.
Single chain variable fragment-IgGs (scFv-IgG) are a class of bispecific antibodies consisting of two single chain variable fragments (scFv) that are fused to an intact IgG molecule. A common trend observed for expression of scFv-IgGs in mammalian cell culture is a higher level of aggregates (10%–30%) compared to mAbs, which results in lower purification yields in order to meet product quality targets. Furthermore, the high aggregate levels also pose robustness risks to a conventional mAb three column platform purification process which uses only the polishing steps (e.g., cation exchange chromatography [CEX]) for aggregate removal. Protein A chromatography with pH gradient elution, high performance tangential flow filtration (HP-TFF) and calcium phosphate precipitation were evaluated at the bench scale as means of introducing orthogonal aggregate removal capabilities into other aspects of the purification process. The two most promising process variants, namely Protein A pH gradient elution followed by calcium phosphate precipitation were evaluated at pilot scale, demonstrating comparable performance. Implementing Protein A chromatography with gradient elution and/or calcium phosphate precipitation removed a sufficient portion of the aggregate burden prior to the CEX polishing step, enabling CEX to be operated robustly under conditions favoring higher monomer yield. From starting aggregate levels ranging from 15% to 23% in the condition media, levels were reduced to between 2% and 3% at the end of the CEX step. The overall yield for the optimal process was 71%. Results of this work suggest an improved three-column mAb platform-like purification process for purification of high aggregate scFv-IgG bispecific antibodies is feasible. © 2018 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers. Biotechnol. Prog., 35: e2720, 2019  相似文献   

14.
An integrated bioprocess has been developed suitable for production of recombinant peptides using a gene multimerization strategy and site-specific cleavage of the resulting gene product. The process has been used for production in E. coli of the human proinsulin C-peptide via a fusion protein BB-C7 containing seven copies of the 31-residues C-peptide monomer. The fusion protein BB-C7 was expressed at high level, 1.8 g l(-1), as a soluble gene product in the cytoplasm. A heat treatment procedure efficiently released the BB-C7 fusion protein into the culture medium. This step also served as an initial purification step by precipitating the majority of the host cell proteins, resulting in a 70% purity of the BB-C7 fusion protein. Following cationic polyelectrolyte precipitation of the nucleic acids and anion exchange chromatography, native C-peptide monomers were obtained by enzymatic cleavage at flanking arginine residues. The released C-peptide material was further purified by reversed-phase chromatography and size exclusion chromatography. The overall yield of native C-peptide at a purity exceeding 99% was 400 mg l(-1) culture, corresponding to an overall recovery of 56%. The suitability of this process also for the production of other recombinant proteins is discussed.  相似文献   

15.
Many problems concerned with the production and the purification of recombinant proteins must be addressed prior to launching an industrial production process. Among these problems, attention is focused on low-level expression that complicates the purification step and can jeopardise the process. The expression of a membrane protein, rP30, of Toxoplasma gondii in the yeast Schizosaccharomyces pombe led to a secretion of only 0.5 microg ml(-1). In order to obtain a sufficient quantity for biochemical characterization and evaluation in vitro diagnostic test development, strategies for both production and purification had to be optimized. First, the influence of four nitrogen sources (three peptones and yeast extract) on the growth rate, but also on the separation between the protein and the components of the fermentation broth was assessed. Second, batch and fed-batch fermentations were compared in terms of final biomass and rP30 concentrations. Third, three different protocols that included fixed and expanded bed ion exchange chromatography were compared for processing a large volume of feedstock. By using the most appropriate strategies, i.e. fed-batch fermentation, capture on EBA cation exchanger and affinity chromatography polishing, a purification factor of 1778 and a yield of 49% were achieved. These performances allowed a 12.5-fold increase for the overall rP30 process productivity.  相似文献   

16.
Cellobiohydrolase II of Trichoderma reesei was produced in laboratory and pilot scale using a transformant strain of Saccharomyces cerevisiae harbouring a multicopy expression plasmid. Different strategies were compared for concentration and partial purification of the enzyme produced in a 200 1 pilot cultivation. After efficient separation of biomass and sub-cellular particulate matter, a combination of ultrafiltration and adsorbent treatment for removal of protein impurities was used to provide a concentrate for chromatographic purification. Effective purification of the CBH II protein was obtained by passing the concentrate through a column of DEAE Sepharose, on which almost all the yeast proteins were adsorbed. The purified enzyme reacted with antibodies prepared against T. reesei CBH II and catalyzed partial solubilization of crystalline cellulose to soluble sugars.  相似文献   

17.
The key step in the purification of a deoxyribonuclease (DNase) from extracts of cod (Gadus morhua L.) pyloric caeca, is the selective retention of the enzyme by anion exchange chromatography. The cod DNase purification on Q-Sepharose Fast Flow (Pharmacia) was optimized, using a 60 ml fixed-bed column. In combination with titration curve analysis, we have screened the effect of buffer pHs, feed conductivity and protein loading, on the product recovery and purity. We have developed elution conditions which allow effective separation of the cod DNase from bounded impurities, such as proteinases and nucleic acids. Low levels of these impurities were regarded as essential for the desired product quality. The optimum resolution and maximum purification (ca. 20-fold increase in specific activity) of DNase, was, however, achieved at low protein loading (2.6 mg ml-1 gel), corresponding to less than 4% of the dynamic bed capacity. Scale-up to a 2.5 l pilot scale column (axial flow) and a 0.25 l radial flow column showed that the separation and yield obtained at laboratory scale was retained, and was independent of column geometry and bed height. The implications for a production scale scenario of 100 g of fractionated protein, are also discussed, as well as process hygiene. The optimization described herein adds further knowledge to the treatment of fish waste and the downstream processing of valuable biochemicals from marine raw material.  相似文献   

18.
Expression in transgenic plants is potentially one of the most economical systems for large-scale production of valuable peptide and protein products. However, the downstream processing of recombinant proteins produced in plants has not been extensively studied. In this work, we studied the extraction and purification of recombinant aprotinin, a protease inhibitor used as a therapeutic compound, produced in transgenic corn seed. Conditions for extraction from transgenic corn meal that maximize aprotinin concentration and its fraction of the total soluble protein in the extract were found: pH 3.0 and 200 mM NaCl. Aprotinin, together with a native corn trypsin inhibitor (CTI), was captured using a tryspin-agarose column. These two inhibitors were separated using an agarose-IDA-Cu2+ column that proved to efficiently absorb the CTI while the recombinant aprotinin was collected in the flowthrough with purity of at least 79%. The high purity of the recombinant aprotinin was verified by SDS-PAGE and N-terminal sequencing. The overall recombinant aprotinin recovery yield and purification factor were 49% and 280, respectively. Because CTI was also purified, the recovery and purification process studied has the advantage of possible CTI co-production. Finally, the work presented here introduces additional information on the recovery and purification of recombinant proteins produced in plants and corroborates with past research on the potential use of plants as biorreactors.  相似文献   

19.
Process development and optimization studies were performed in order to improve the purification process of (rhIFN-gamma). The objective was to generate material with higher purity and quantity. An in-process control screening was developed to obtain the optimal condition for column chromatographic purification by measuring LPS, nucleic acids, rhIFN- gamma, monomer and its covalent dimers. A new resin screening method was applied to select optimal resin for each of the chromatographic columns. The resulting process used Butyl and Q-Sepharose, refolding and SP-Sepharose for purification of IFN-gamma. Effects of different process conditions such as cell lysis, removal of impurity and oxygen concentration were evaluated. Removal of impurities was evaluated by washing of inclusion bodies with 1% Triton X-100 and 3M urea and different chromatography steps. The results reveal that Triton removed about 43% of the LPS but urea had no effect on removal of nucleic acids and LPS. Further analysis show that removal of impurities by column chromatography decreases aggregation and increases the process yield. Oxygen concentration was identified as parameter that could have a significant impact on covalent dimers formation, as an unacceptable pharmaceutical form of rhIFN-gamma. On the basis of small-scale studies, optimum operating conditions were chosen and the purification process was successfully scaled-up to a pilot scale process with step yield and product quality that were better than previous reports.  相似文献   

20.
Tian L  Sun SS 《PloS one》2011,6(8):e24183

Background

Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor.

Methodology/Principal Findings

To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL) with anti-tumor bioactivity as example target protein and rice seeds as production platform. Results showed that ELP-intein-PAL (EiP) fusion protein formed novel irregular ER-derived protein bodies in endosperm cells by retention of endogenous prolamins. The fusion protein was partially self-cleaved in vivo, but only self-cleaved PAL protein was detected in total seed protein sample and deposited in protein storage vacuoles (PSV). The in vivo uncleaved EiP protein was accumulated up to 2–4.2% of the total seed protein. The target PAL protein could be purified by the ELP-intein system efficiently without using complicated instruments and expensive chemicals, and the yield of pure PAL protein by the current method was up to 1.1 mg/g total seed protein.

Conclusion/Significance

This study successfully demonstrated the purification of an example recombinant protein from rice seeds by the ELP-intein system. The whole purification procedure can be easily scaled up for industrial production, providing the first evidence on applying the ELP-intein coupling system to achieve cost-effective purification of recombinant proteins expressed in plant bioreactors and its possible application in industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号