首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compounds 7, 8, and 9, derived from the novel scaffolds 3, 5, and 6, were synthesized and evaluated in vitro. The b,c  c,d shift of the E-phenyl ring resulted in a large decrease (ca. 20- to 1000-fold) in binding to the 5-HT2A, 5-HT2C and H2, receptors, and a modest decrease (ca. 10- to 20-fold) in binding to the 5-HT5A, D2, D5, and α1D, receptors. The b,c  d,e shift resulted in a large decrease in binding to the 5-HT1D, 5-HT2C, 5-HT6, and H1 receptors, a modest decrease in binding to 5-HT1A, 5-HT5A and D2, D5, α2B, and H2 receptors, and a large increase in affinity to the 5-HT3, 5-HT6, and σ1 receptors.  相似文献   

2.
(Piperazin-1-yl-phenyl)-arylsulfonamides were synthesized and identified to show high affinities for both 5-HT2C and 5-HT6 receptors. Among them, naphthalene-2-sulfonic acid isopropyl-[3-(4-methyl-piperazin-1-yl)-phenyl]-amide (6b) exhibits the highest affinity towards both 5-HT2C (IC50 = 4 nM) and 5-HT6 receptors (IC50 = 3 nM) with good selectivity over other serotonin (5-HT1A, 5-HT2A, and 5-HT7) and dopamine (D2–D4) receptor subtypes. In 5-HT2C and 5-HT6 receptor functional assays, this compound showed considerable antagonistic activity for both receptors.  相似文献   

3.
On the basis of systematic studies on the structure–activity relationships in arylpiperazine group of serotonin ligands, 12 new derivatives containing quinazolidin-4(3H)-one (14), 2-phenyl-2,3-dihydrophthalazine-1,4-dione (58) or 1-phenyl-1,2-dihydropyridazine-3,6-dione (912) fragments were synthesized. The majority of the tested compounds (2, 4, 7, 8 and 1012) showed a high affinity for 5-HT1A receptors (Ki=11–54 nM) and two (1, 2) were found active at 5-HT2A sites (16 and 68 nM, respectively). All the new 5-HT1A ligands tested in vivo revealed an antagonistic activity at postsynaptic 5-HT1A receptors, and three of them behaved as agonists at presynaptic ones. Additionally, both the meta-chlorophenylpiperazine derivatives containing quinazolidin-4-one fragment showed features of 5-HT2A receptor antagonists. The dual 5-HT1A/5-HT2A receptor ligand (2) was further tested for its potential psychotropic activity. It showed a distinct anxiolytic-like activity in a conflict drinking test in rats and the observed effect was more potent in terms of the active dose, than that produced by diazepam (used as a reference drug).  相似文献   

4.
A series of 9-disubstituted N-(9H-fluorene-2-carbonyl)guanidine derivatives have been discovered as potent and orally active dual 5-HT2B and 5-HT7 receptor antagonists. Upon screening several compounds, N-(diaminomethylene)-4′,5′-dihydro-3′H-spiro[fluorene-9,2′-furan]-2-carboxamide (17) exhibited potent affinity for both 5-HT2B (Ki = 5.1 nM) and 5-HT7 (Ki = 1.7 nM) receptors with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Optical resolution of the intermediate carboxylic acid 16 via the formation of diastereomeric salts using chiral alkaloids gave the optically pure compounds (R)-17 and (S)-17. Both enantiomers suppressed 5-HT-induced dural protein extravasation in guinea pigs in a dose-dependent manner and the amount of leaked protein was suppressed to near normal levels when orally administrated at 10 mg/kg. (R)-17 and (S)-17 were therefore selected as candidates for human clinical trials.  相似文献   

5.
N′-Cyanoisonicotinamidine derivatives, linked to an arylpiperazine moiety, were prepared to identify highly selective and potent 5-HT1A ligands as potential pharmacological tools in studies of wide spread psychiatric disorders. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine) known to be critical in order to have affinity on 5-HT1A receptor and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed affinity in nanomolar and subnanomolar range at 5-HT1A and moderate to no affinity for other relevant receptors (5-HT2A, 5-HT2C, D1, D2, α1 and α2). N′-Cyano-N-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)isonicotinamidine (4o) with Ki = 0.038 nM, was the most active and selective derivative for the 5-HT1A receptor with respect to other serotoninergic, dopaminergic and adrenergic receptors.  相似文献   

6.
To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure–activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki = 1.8 nM and Ki = 17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.  相似文献   

7.
We previously reported that the novel dual 5-HT2B and 5-HT7 receptor antagonist N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (4) exerted a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs. To develop a synthetic strategy, we performed docking studies of lead compound 4 bound to 5-HT2B and 5-HT7 receptors, and observed that the carbonyl guanidine group forms a tight interaction network with an active center Asp (D135:5-HT2B, D162:5-HT7), Tyr (Y370:5-HT2B, Y374:5-HT7) and aromatic residue (W131:5-HT2B, F158:5-HT7). Based on molecular modeling results, we optimized the substituents at the 5- to 8-position and 9-position of the fluorene ring and identified N-(diaminomethylene)-9-hydroxy-9-methyl-9H-fluorene-2-carboxamide (24a) exhibits potent affinity for 5-HT2B (Ki = 4.3 nM) and 5-HT7 receptor (Ki = 4.3 nM) with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 24a reversed the hypothermic effect of 5-carboxamidotryptamine (5-CT) in mice and also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered at 30 mg/kg. Compound 24a is therefore a promising candidate for a novel class of anti-migraine agent without any adverse effects.  相似文献   

8.
A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki = 0.6 nM), 6c and 6i (Ki = 0.4 nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki = 62.7 nM and Ki = 30.5 nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability.  相似文献   

9.
The synthesis and in vitro preclinical profile of a series of 5-heteroaryl substituted analogs of the antipsychotic drug sertindole are presented. Compounds 1-(4-fluorophenyl)-3-(1-methylpiperidin-4-yl)-5-(pyrimidin-5-yl)-1H-indole (Lu AA27122, 3i) and 1-(4-fluorophenyl)-5-(1-methyl-1H-1,2,4-triazol-3-yl)-3-(1-methylpiperidin-4-yl)-1H-indole (3l) were identified as high affinity α1A-adrenoceptor ligands with Ki values of 0.52 and 0.16 nM, respectively, and with a >100-fold selectivity versus dopamine D2 receptors. Compound 3i showed almost equal affinity for α1B- (Ki = 1.9 nM) and α1D-adrenoceptors (Ki = 2.5 nM) as for α1A, as well as moderate affinity for 5-HT1B (Ki = 13 nM) and 5-HT6 (Ki = 16 nM) receptors, whereas 3l showed >40-fold selectivity toward all other targets tested. Based on in vitro assays for assessment of permeability rates and extent, it is predicted that both compounds enter the brain of rats, non-human primates, as well as humans, and as such are good candidates to be carried forward for further evaluation as positron emission tomography (PET) ligands.  相似文献   

10.
We synthesized several novel 2-O- or 11-O-substituted N-alkylnoraporphines and assessed their affinities at dopamine D1 and D2, and serotonin 5-HT1A receptors in rat forebrain tissue. Tested compounds displayed moderate to high affinities to D2 receptors but low affinities to D1 and 5HT1A receptors. The findings accord with previous evidence of a lipophilic cavity on the surface of the D2 receptor to accommodate N-alkyl moieties of aporphines. The most D2-potent (Ki = 97 nM) and selective novel agent (>100-fold vs. D1 and 5-HT1A sites) was R(−)-2-(2-hydroxyethoxy)-11-hydroxy-N-n-propylnoraporphine (compound 11).  相似文献   

11.
In the pharmacotherapy of schizophrenia, there is a lack of effective drugs, and currently used agents cause a large number of side effects. The D2, 5-HT1A, 5-HT2A receptors are among the most important receptor targets in the treatment of schizophrenia, but antagonism at 5-HT6 and 5-HT7 receptors may bring about additional improvement of cognitive functions. However, doubt exists regarding the importance of 5-HT7R in the pharmacotherapy. In 2010, lurasidone (with high affinity for D2, D3, 5-HT1A, 5-HT2A, 5-HT7 receptors) was approved for the treatment of schizophrenia. Due to the efficacy of the mentioned drug and doubts related to the role of 5-HT7R, we decided to obtain compounds with an activity profile similar to that of lurasidone, but with the reduced affinity for 5-HT7R and increased affinity for 5-HT6R. For this purpose, we chose a flexible hexyl derivative of lurasidone (2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)hexahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 1a) as a hit structure. After molecular modeling, we modified it, in the area of the arylpiperazine and imide group, using the moieties found in other known CNS drugs. We received the compounds in accordance with the previously developed method of ecological synthesis in the microwave radiation field. Among the obtained compounds, N-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)naphthalene-sulfonamides 1v and 1w were distinguished as multifunctional ligands showing increased affinity for 5-HT6R, and 2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one 1i – a multifunctional ligand showing moderate affinity for 5-HT6R and threefold lower for 5-HT7R. In the paper, we discuss some of the observed dependencies regarding 5-HT6/5-HT7R affinity using molecular docking methods.  相似文献   

12.
A novel series of 5-HT2A ligands that contain a (phenylpiperazinyl-propyl)arylsulfonamides skeleton was synthesized. Thirty-seven N-(cycloalkylmethyl)-4-methoxy-N-(3-(4-arylpiperazin-1-yl)propyl)-arylsulfonamide and N-(4-(4-arylpiperazin-1-yl)butan-2-yl)-arylsulfonamide compounds were obtained. The binding of these compounds to the 5-HT2A, 5-HT2C, and 5-HT7 receptors was evaluated. Most of the compounds showed IC50 values of less than 100 nM and exhibited high selectivity for the 5-HT2A receptor. Among the synthesized compounds, 16a and 16d showed good affinity at 5-HT2A (IC50 = 0.7 nM and 0.5 nM) and good selectivity over 5-HT2C (50–100 times) and 5-HT7 (1500–3000 times).  相似文献   

13.
A series of new 7-arylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 8-amino substituent in 8 position was synthesized and their 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, and D2 receptor affinities were determined. The binding study allowed identifying some potent 5-HT1A/5-HT2A/5-HT7/D2 ligands. The most interesting because of their multireceptor profile were 8-piperidine (3035) and 8-dipropylamine (4547) analogs with four and five carbon aliphatic linkers. The selected compounds 24, 31, 34, 39, 41, 43, 45, and 46 in the functional in vitro evaluation for all targeted receptors showed significant partial D2 agonist, partial 5-HT1A agonist, and 5-HT2A antagonist properties. The advantageous in vitro affinity of compound 34 for 5-HT1A and D2 receptors has been explained by means of molecular modeling, taking into consideration its partial agonist activity towards the latter one. In behavioral studies, compounds 32 and 34 revealed antipsychotic-like properties, significantly decreasing d-amphetamine-induced hyperactivity in mice.  相似文献   

14.
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.  相似文献   

15.
More than 300 million people are suffering from depression, one of the civilization diseases in the 21st century. Serotonin 5-HT1AR and dopamine D2R play an important role in the treatment and pathogenesis of depression. Moreover, in recent years, the efficacy of dual 5-HT1A/D2 receptors ligands has been demonstrated in the fight against depression. In this work the new bulky arylpiperazine derivatives (LCAP) were synthesized in microwave radiation field. The affinities for the selected serotonin (5-HT1A,5-HT2A,5-HT6,5-HT7) and dopamine (D2) receptors have been evaluated in vitro. Compounds 5.3a, 5.4, 5.1c, 5.3d, 5.2a are promising dual 5-HT1AR/D2R ligands. The SAR analysis were additionally supported with molecular docking studies.  相似文献   

16.
The serotonin 5-HT7 G protein-coupled receptor (GPCR) is a proposed pharmacotherapeutic target for a variety of central and peripheral indications, albeit, there are no approved drugs selective for binding 5-HT7. We previously reported that a lead analog based on the 5-substituted-N,N-disubstituted-1,2,3,4-tetrahydronaphthalen-2-amine (5-substituted-2-aminotetralin, 5-SAT) scaffold binds with high affinity at the 5-HT7 GPCR, and can treat symptoms of autism in mouse models; subsequently, the lead was found to have high affinity at the 5-HT1A GPCR. Herein, we report the synthesis of novel 5-SAT analogs to develop a 3-dimensional quantitative structure—affinity relationship (3D-QSAR) at the human 5-HT7 receptor for comparison with similar studies at the highly homologous 5-HT1A receptor. We report 35 new 5-SAT ligands, some with very high affinity (Ki ≤ 1 nM) and stereoselectivity at 5-HT7 + or 5-HT1A receptors, several with modest selectivity (up to 12-fold) for binding at 5-HT7, and, several ligands with high selectivity (up to 40-fold) at the 5-HT1A receptor. 3D-QSAR results indicate that steric extensions at the C(5)-position improve selectivity for the 5-HT7 over 5-HT1A receptor, while steric and hydrophobic extensions at the chiral C(2)-amino position impart 5-HT1A selectivity. In silico receptor homology modeling studies, supplemented with molecular dynamics simulations and binding free energy calculations, were used to rationalize experimentally-determined receptor selectivity and stereoselective affinity results. The data from these studies indicate that the 5-SAT chemotype, previously shown to be safe and efficacious in rodent paradigms of neurodevelopmental and neuropsychiatric disorders, is amenable to structural modification to optimize affinity at serotonin 5-HT7 vs. 5-HT1A GPCRs, as may be required for successful clinical translation.  相似文献   

17.
The synthesis and structure-activity relationship (SAR) of a novel series of aryl piperazine napthyridinone D2 partial agonists is described. Our goal was to optimize the affinities for the D2, 5-HT2A and 5-HT1A receptors, such that the D2/5-HT2A ratio was greater than 5 to ensure maximal occupancy of these receptors when the D2 occupancy reached efficacious levels. This strategy led to identification of PF-00217830 (2) with robust inhibition of sLMA (MED = 0.3 mg/kg) and DOI-induced head twitches in rats (31% and 78% at 0.3 and 1 mg/kg) with no catalepsy observed at the highest dose tested (10 mg/kg).  相似文献   

18.
A series of fourteen novel, eight-membered lactam- and dilactam-based analogues of tricyclic drugs were obtained in a simple one-pot procedure. Crystal structures of two compounds were determined by single-crystal X-ray diffraction analysis and their selected structural features were discussed and compared with those of imipramine and dibenzepine. Affinity of developed molecules for histamine receptor H1, serotonin receptors 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, serotonin transporter (SERT) and dopamine receptor D2 was determined. The commercial drug dibenzepine was also checked on these molecular targets, as its mechanism of action is largely unknown. Two derivatives of 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one (7,8) and two of dibenzo[b,f]azocin-6(5H)-one (9,10) were found to be active toward the H1 receptor in sub-micromolar concentrations.  相似文献   

19.
A series of fluoro substituted pyridinylcarboxamides and their phenylazo analogues with high affinity and selectivity for the dopamine D3 receptor was synthesized by the use of 6-fluoropyridine-3-carbonyl chloride (1) and fluorophenylazocarboxylic ester (2). Several of these compounds (9ae and 10ah) have been evaluated in vitro, among which 9b, 10a, 10c and 10d proved to have at least single-digit nanomolar affinity for D3. They also exhibit considerable selectivity over the other dopamine receptor subtypes and noteworthy selectivity over the structurally related serotonin receptor subtypes 5-HT1A and 5-HT2, offering potential radiotracers for positron emission tomography.  相似文献   

20.
All clinically-used antipsychotics display similar affinity for both D2 (D2R) and D3 (D3R) receptors, and they likewise act as 5-HT2A receptor antagonists. They provide therapeutic benefit for positive symptoms, but no marked or consistent improvement in neurocognitive, social cognitive or negative symptoms. Since blockade of D3 and 5-HT6 (5-HT6R) receptors enhances neurocognition and social cognition, and potentially improves negative symptoms, a promising approach for improved treatment for schizophrenia would be to develop drugs that preferentially act at D3R versus D2R and likewise recognize 5-HT6R. Starting from the high affinity 5-HT6R ligands I and II, we identified compounds 11a and 14b that behave as 5-HT6R ligands with significant selectivity for D3R over D2R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号