首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
盐角草(Salicornia europaea L.)是一种喜盐植物,其最佳生长的实现需要200—400 mmol/L NaCl。为了解盐渍环境下盐角草氮素吸收利用特点,在水培添加200或400 mmol/L NaCl情况下,从生长指标,光合参数,根系体积和活力,硝酸还原酶与谷氨酰胺合成酶活力,蛋白、总氮、硝态氮及铵态氮含量等方面检测了硝态氮、铵态氮和尿素3种氮形态对盐角草生长的影响。研究发现以氮摩尔浓度(mmol/L)计,在0.1—400 mmol/L浓度范围进行测试,盐角草在0.1 mmol/L低氮条件下仍能维持生长,同时,抑制盐角草生长的氮浓度域值较高,其中铵态氮、尿素和硝态氮分别为50、50及400 mmol/L。研究结果表明盐角草吸收利用氮素的能力强,对氮素的浓度耐受范围宽,3种氮形态都可作为氮源满足其生长需要,但有效促进生长的效果存在差异,总体顺序从高到低依次为硝态氮、铵态氮和尿素。研究为揭示盐生植物氮吸收利用特点提供了基础数据,对提高盐生植物生产力,指导沿海滩涂生态建设具有一定的指导意义。  相似文献   

2.
A study of nitrate and chlorate uptake by Arabidopsis thaliana was made with a wildtype and two mutant types, both mutants having been selected by resistance to high chlorate concentrations. All plants were grown on a nutrient solution with nitrate and/or ammonium as the nitrogen source. Uptake was determined from depletion in the ambient solution. Nitrate and chlorate were able to induce their own uptake mechanisms. Plants grown on ammonium nitrate showed a higher subsequent uptake rate of nitrate and chlorate than plants grown on ammonium alone. Mutant B25, which has no nitrate reductase activity, showed higher rates of nitrate and chlorate uptake than the wildtype, when both types were grown on ammonium nitrate. Therefore, the uptake of nitrate is not dependent on the presence of nitrate reductase. Nitrate has a stimulating effect on nitrate and chlorate uptake, whereas some product of nitrate and ammonium assimilation inhibits uptake of both ions by negative feedback. Mutant B 1, which was supposed to have a low chlorate uptake rate, also has disturbed uptake characteristics for nitrate.  相似文献   

3.
Claussen  W.  Lenz  F. 《Plant and Soil》1999,208(1):95-102
Blueberry, raspberry and strawberry may have evolved strategies for survival due to the different soil conditions available in their natural environment. Since this might be reflected in their response to rhizosphere pH and N form supplied, investigations were carried out in order to compare effects of nitrate and ammonium nutrition (the latter at two different pH regimes) on growth, CO2 gas exchange, and on the activity of key enzymes of the nitrogen metabolism of these plant species. Highbush blueberry (Vaccinium corymbosum L. cv. 13–16–A), raspberry (Rubus idaeus L. cv. Zeva II) and strawberry (Fragaria × ananassa Duch. cv. Senga Sengana) were grown in 10 L black polyethylene pots in quartz sand with and without 1% CaCO3 (w: v), respectively. Nutrient solutions supplied contained nitrate (6 mM) or ammonium (6 mM) as the sole nitrogen source. Compared with strawberries fed with nitrate nitrogen, supply of ammonium nitrogen caused a decrease in net photosynthesis and dry matter production when plants were grown in quartz sand without added CaCO3. In contrast, net photosynthesis and dry matter production increased in blueberries fed with ammonium nitrogen, while dry matter production of raspberries was not affected by the N form supplied. In quartz sand with CaCO3, ammonium nutrition caused less deleterious effects on strawberries, and net photosynthesis in raspberries increased as compared to plants grown in quartz sand without CaCO3 addition. Activity of nitrate reductase (NR) was low in blueberries and could only be detected in the roots of plants supplied with nitrate nitrogen. In contrast, NR activity was high in leaves, but low in roots of raspberry and strawberry plants. Ammonium nutrition caused a decrease in NR level in leaves. Activity of glutamine synthetase (GS) was high in leaves but lower in roots of blueberry, raspberry and strawberry plants. The GS level was not significantly affected by the nitrogen source supplied. The effects of nitrate or ammonium nitrogen on net photosynthesis, growth, and activity of enzymes in blueberry, raspberry and strawberry cultivars appear to reflect their different adaptability to soil pH and N form due to the conditions of their natural environment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
通过盆栽和水培试验,探讨了硝态氮对小白菜铬污染毒性的调控作用。结果表明:外源Cr6 对小白菜铬吸收和积累具有明显的促进效应,抑制了小白菜对铁养分的吸收并降低了小白菜的硝酸还原酶活性;硝态氮可有效缓减Cr6 对小白菜吸收铁和硝酸还原酶活性的抑制作用,促进小白菜碳氮代谢和Vc的生物合成,并刺激小白菜生长。在相同铬污染条件下,土壤硝态氮的增加促进了外源Cr6 向有机态转化,且硝态氮有协同强化小白菜吸收Cr6 的效应。表明硝态氮在促进小白菜生长的同时,也促进了小白菜对Cr6 的吸收,提高了小白菜的铬累积水平。  相似文献   

6.
以3年生新红星苹果树为试验材料,在春季将稻草苫、农用地毯、透明塑料膜和园艺地布覆盖地表,于夏秋季调查根区土壤硝化-反硝化作用、硝酸还原酶(NR)和亚硝酸还原酶(NiR)活性以及铵态氮、硝态氮、亚硝态氮含量和植株生长的变化.结果表明: 4种覆盖处理均降低了夏季土壤硝化强度和夏秋之交的土壤NiR活性,提高了秋季土壤铵态氮含量以及夏秋之交的土壤反硝化强度、NR活性和铵态氮含量,降低了夏秋季土壤硝化强度、反硝化强度和NR活性的变异系数;稻草苫提高了夏季和秋季土壤反硝化强度与硝态氮含量,降低了夏季土壤NR和NiR活性;在4种处理中,稻草苫覆盖的土壤硝化与反硝化强度及NR活性在整个夏秋季的变异系数最低;农用地毯降低了夏季土壤反硝化强度,提高了夏季土壤NR和NiR活性、夏秋之交土壤硝态氮含量和秋季土壤反硝化强度;透明塑料膜降低了夏季土壤硝态氮含量,提高了夏季土壤亚硝态氮含量、夏秋之交土壤硝态氮含量以及秋季土壤硝化强度和NiR活性;园艺地布提高了夏季土壤反硝化强度、夏秋之交和秋季土壤的硝化强度以及秋季土壤硝态氮含量.4种覆盖处理均促进了植株生长,其中稻草苫和园艺地布促进新梢和干径增粗的效果更显著;4种覆盖处理对夏秋季土壤硝酸盐代谢的影响不同,但对土壤硝酸盐代谢与转化都具有稳定作用,其中稻草苫的稳定效果最好.  相似文献   

7.
Malagoli  M.  Dal Canal  A.  Quaggiotti  S.  Pegoraro  P.  Bottacin  A. 《Plant and Soil》2000,221(1):1-3
In forest soils, ammonium is usually the predominant form of inorganic nitrogen. However, the capacity of trees to utilize both NO3 - and NH3 + may provide greater flexibility in responding to changes of nitrogen supply from the environment. Such capacity has been studied in seedlings of Scots pine (Pinus sylvestris L.) and European larch (Larix decidua Mill.) grown in the presence or absence of either nitrate or ammonium. Nitrate-induced plants showed a higher nitrate uptake rate than non-induced plants; this difference was almost negligible after 24 h of exposure to NO3 -. Ammonium uptake in both species was consistently higher than that of nitrate, regardless of prior nitrogen provision. In both nutrient conditions, larch showed a more efficient transport system in comparison with Scots pine, with higher ammonium and nitrate uptake rates in both induced and non-induced plants. This was consistent also with the activity of nitrate reductase, measured in vivo in roots and leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
BACKGROUND AND AIMS: Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. METHODS: Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. RESULTS: Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. CONCLUSIONS: V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.  相似文献   

9.
Seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were used in two sets of experiments in order to evaluate; (1) the reciprocal effects of each nitrogen form on net uptake of nitrate and ammonium, and (2) the effect of earlier nitrogen nutrition on ammonium versus nitrate uptake. In the former group of experiments we studied the kinetics of nitrate and ammonium uptake as well as the interference of each of the two forms with net uptake of ammonium and nitrate by both nitrogen depleted and nitrogen fed carob seedlings. On the whole, nitrogen depletion led to increase in both affinity and Vmax of the system for both forms of nitrogen, at the same time as the effects of nitrate on uptake of ammonium and vice versa were concentration dependent. In the second group of experiments the effects of earlier nitrogen nutrition on nitrate and ammonium uptake were characterized, and in this case we observed that: (a) if only one form of N was supplied, ammonium was taken up in greater amounts than nitrate; (b) the presence of ammonium enhanced nitrate uptake; (c) ammonium uptake was inhibited by nitrate; (d) there was a significant effect of the earlier nitrogen nutrition on the response of the plants to a different nitrogen source. The latter was evident mainly as regards ammonium uptake by plants grown in ammonium nitrate. The interactions between nitrate and ammonium uptake systems are discussed on the basis of the adaptation to the nitrogen source during early growth.  相似文献   

10.
The effect of low pH and aluminum on nitrogen uptake and metabolism was studied in roots of Lotus japonicus grown in hydroponic cultures. The low pH slightly suppressed root elongation, and this effect was accompanied by the suppression of nitrate and ammonia uptake, as well as the nitrate reductase activity. In spite of high resistance of young Lotus plants to short-term Al application, the one-day treatment of Al strongly reduced nitrate uptake and also the activity of nitrate reductase (NRA) in the apical parts of roots. The glutamine synthetase activity was also suppressed by Al treatment, but in lower extent. On the other hand, the ammonium uptake and nitrite reductase activity stayed unchanged by Al treatment and the values were practically the same as in control plants. These results support the view that nitrate uptake and nitrate reduction might be the main processes responsible for Al induced growth retardation in Lotus plants grown in mineral acid soils.  相似文献   

11.
Combined nitrogen (N) and sulfur (S) fertilization positively influences yield and quality in cereal crops, and S additions can enhance N use efficiency. Previous studies showed that S deficiency leads to a particular strong decrease in nitrate reductase activity and in nitrate uptake relative to ammonium. We therefore tested the hypothesis whether N fertilization in the form of urea improves N utilization under S deficiency. When barley plants were grown on a S-deficient soil for seven weeks, N additions increased biomass and S concentrations in shoots of nitrate- and urea-supplied plants to the same extent. Under S deficiency nitrate-supplied plants accumulated more N in the form of nitrate and asparagine than urea-supplied plants. This supported the view that asparagine synthesis under S deficiency is induced under supply of nitrate but not or much less by urea. Hydroponically grown plants were then assayed for their nitrate and nitrite reductase activities in response to S supply. Nitrate reductase activity sharply decreased under limiting S supply, while nitrite reductase activity did not respond to S supply, indicating that nitrate reduction rather than nitrite reduction represents the S-limited assimilatory process. Thus, although nitrate reduction is particularly sensitive to S deficiency, urea supply did not improve growth and N efficiency under limited S availability but rather prevented an excess accumulation of asparagine.  相似文献   

12.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

13.
Current global nitrogen fertilizer use has reached approximately one hundred billion kg per annum. In many agricultural systems, a very substantial portion of this applied nitrogen fertilizer is lost from soil to groundwaters, rivers and oceans. While soil physicochemical properties play a significant part in these losses, there are several characteristic features of plant nitrogen transporter function that facilitate N losses. Nitrate and ammonium efflux from roots result in a reduction of net nitrogen uptake. As external nitrate and ammonium concentrations, respectively, are increased, particularly into the range of concentrations that are typical of agricultural soils, elevated rates of nitrate and ammonium efflux result. The rapid down-regulation of high-affinity influx as plants become nitrogen replete further reduces the root's capacity to acquire external nitrogen; only nitrogen-starved roots absorb with both high capacity and high affinity. The results of studies using molecular biology methods demonstrate that genes encoding nitrate and ammonium transporters are rapidly down-regulated when nitrogen is resupplied to nitrogen-starved plants. Provision of ammonium to roots of plants actively absorbing nitrate imposes a block on nitrate uptake, the extent of which depends on the ammonium concentration, thus further reducing the efficient utilization of soil nitrate. During the daily variation of incoming light and during periods of low incident irradiation (i.e. heavy cloud cover) the expression levels of genes encoding nitrate and ammonium transporters, and rates of nitrate and ammonium uptake, are substantially reduced. Low temperatures reduce growth and nitrogen demand, and appear to discriminate against high-affinity nitrogen influx. In sum, these several factors conspire to limit rates of plant nitrogen uptake to values that are well below capacity. These characteristics of the plant's nitrogen uptake systems facilitate nitrogen losses from soils.  相似文献   

14.
Phototrophic growth of the moderate halotolerant Rhodobacter capsulatus strain E1F1 in media containing up to 0.3 M NaCl was dependent on the nitrogen source used. In these media, increased growth rates and growth levels were observed in the presence of reduced nitrogen sources such as ammonium and amino acids. When the medium contained an oxidized nitrogen source (dinitrogen or nitrate), increases in salinity severely inhibited phototrophic growth. However, the addition of glycine betaine promoted halotolerance and allowed the cells to grow in 0.2 M NaCl. Inhibition of diazotrophic growth by salinity was due to a decrease in nitrogenase activity which was no longer synthesized and reversibly inactivated, both effects being alleviated by the addition of glycine betaine. In R. capsulatus E1F1, inhibition of cell growth in nitrate by salt was due to a rapid inhibition of nitrate uptake, which led to a long-term decrease in nitrate reductase activity, probably caused by repression of the enzyme. Addition of glycine betaine immediately restored nitrate uptake, but the recovery of nitrate reductase activity required several hours. Neither ammonium uptake nor ammonium assimilation through the glutamine synthetase-glutamate synthase pathway was affected by NaCl.  相似文献   

15.
外来入侵植物的氮代谢及其土壤氮特征   总被引:7,自引:1,他引:6  
研究了4种外来入侵植物(五爪金龙、南美蟛蜞菊、金腰箭和马缨丹)和1种本地植物鸡矢藤(对照)的氮代谢及其土壤氮特征.结果表明:外来人侵植物的组织硝酸还原酶活性、根际土壤NH4-N、NO3-N含量、蛋白酶活性和脲酶活性均较高,分别为鸡矢藤的1.65~4.34、1.56~2.15、1.72~3.11、1.43~3.23和1.41~3.33倍,而植物组织硝态氮含量则较低,仅为鸡矢藤的17.5%~50.6%.相关分析表明:植物组织硝酸还原酶活性与根际土壤总氮、NH4-N、NO3-N含量呈显著正相关(P<0.05),与蛋白酶活性和脲酶活性呈极显著正相关(P<0.01).这说明,外来植物入侵使土壤氮代谢加快,氮的生物有效性增强,氮同化能力提高,并且较好地将植物体氮素代谢与土壤氮素代谢协调起来.因此,较强的氮素同化能力与加速土壤氮素的转化可能是植物成功入侵的重要机制之一.  相似文献   

16.
STEER  B. T. 《Annals of botany》1982,49(2):191-198
Species differ in the relationship of nitrate reductase activityto nitrate uptake. In Capsicum annuum different diurnal patternsof leaf nitrate reductase activity and nitrate uptake have beenreported. As a consequence, the relationship of free nitratein the plant to nitrate supplied has a higher level of significancethan has reduced nitrogen to nitrate supplied. In Zea mays ithas been reported that leaf nitrate reductase activity respondsdirectly to nitrate translocation to the leaf and in this speciesthe relationship of greatest significance is reduced nitrogencontent to nitrate supplied. In both species, and also in Cucumis melo, the proportion oftotal plant free nitrate and reduced nitrogen in the roots decreases,and in the stem increases, with increasing nitrate supplied. The accumulation of free nitrate in leaves is accompanied bya quantitatively different relationship between reduced nitrogenand dry weight compared to leaves not accumulating nitrate. Capsicum annuum. L., Cucumis melo L., melon, Zea mays L., maize, sweet corn, nitrate reductase, nitrate uptake  相似文献   

17.
Nitrate reductase activity in the first true leaves of canola(Brassica napus L.) seedlings grown in one-quarter strengthHoagland's solution from seeds pretreated with triadimenol (0.3or 30 g (a.i.) kg–1 of seed) was higher than controlsduring the growth period of 15 to 25 d after planting. Triadimenolalso increased chlorophyll levels, the increase being more pronouncedat its lower concentration. The treatment also increased theweight and nitrate content of the leaves. When seedlings weregrown in nutrient solution containing 1 to 20 mM nitrate, theincrease in nitrate reductase activity by triadimenol was higherat lower rather than at higher nitrate concentrations. The nitratelevels and Kjeldahl nitrogen in the triadimenol-treated leaveswas higher than the controls at concentrations of added nitrateabove 2 mM. Addition of nitrate to plants grown in ammonium,increased nitrate reductase activity more in plants grown fromtriadimenol-treated seeds than controls. However, addition of10µM triadimenol for 24 h to ammonium-grown plants hadlittle effect on enzyme activity, both in the absence as wellas the presence of nitrate. This study demonstrates that triadimenolincreases nitrate reductase activity and nitrate accumulationin the leaves and at least part of the increased enzyme activityis independent of nitrate accumulation. Key words: Triazoles, nitrate content, nitrate reductase activity  相似文献   

18.
控释掺混尿素对稻、麦土壤氮与酶活性的影响   总被引:1,自引:0,他引:1  
通过大田试验,共设7个处理,即不施氮、常规施肥以及掺混控释氮肥10%、20%、40%、80%、100%处理,探讨了不同施肥处理对土壤中4种形态氮(全氮、铵态氮、硝态氮、微生物生物量氮)和3种氮功能性酶(脲酶、蛋白酶、硝酸还原酶)活性的影响,以探究控释掺混尿素对稻、麦土壤肥力和环境的影响.结果表明: 土壤全氮在稻、麦全生育期内趋于稳定,且掺混比例20%以上各控释氮肥处理在稻、麦季均无显著差异;掺混40%以上控释氮肥能有效促进稻、麦生育中后期土壤无机氮水平;随稻、麦生育期推进,掺混40%以上控释氮肥处理可显著提高土壤微生物生物量氮,但常规施肥处理的微生物生物量氮整体呈明显下降趋势;掺混40%以上控释氮肥能明显提升稻、麦生育中后期土壤酶活性,土壤蛋白酶与硝酸还原酶活性在作物生育后期均随掺混比例增加而提高,以100%控释氮肥处理土壤酶活性最高.掺混20%以上控释氮肥处理能明显降低水稻季分蘖期脲酶活性,推迟铵态氮峰值期,有利于减少氮损失;掺混40%以上控释氮肥处理均可保障稻、麦生育中后期的氮素供应,刺激土壤脲酶与蛋白酶参与氮素转换,促进了土壤氮素有效性;100%控释氮肥处理对稻、麦生育后期土壤硝酸还原酶活性增加最明显,与掺混40%~80%控释氮肥处理相比,可显著减少小麦季20~40 cm土壤硝态氮残留量,在减少氮素损失方面的效果明显.  相似文献   

19.
土壤中氮素的吸收、转化及含量的变化是影响植被生长的关键因素。为探讨湿地植被不同退化状态对土壤氮组分含量和相关酶活性的影响,以及土壤氮组分含量与相关酶活性之间的关系,以甘南尕海湿地不同植被退化状态样地(未退化CK、轻度退化SD、中度退化MD和重度退化HD)为研究对象,采用野外采样与室内实验相结合的方法,分析了植被不同退化状态下不同形态氮组分(全氮、铵态氮、硝态氮和微生物量氮)含量的变化特征,以及土壤氮转化酶(蛋白酶、脲酶、硝酸还原酶和亚硝酸还原酶)活性之间的相关关系。结果表明:(1)在植被退化状态下,土壤含水量逐渐减小,土壤温度呈先减小后增大的趋势;(2)随着植被退化程度的加剧,硝态氮含量呈增加趋势,而全氮、铵态氮和微生物量氮含量均随退化程度加剧呈减小趋势;土壤蛋白酶活性随退化程度的加剧而减小,脲酶活性呈先减小后增大的趋势,重度退化活性最高,轻度退化最低;硝酸还原酶活性随退化程度的加剧而增加,亚硝酸还原酶活性表现为"升-降-升"的变化趋势,即轻度退化活性最高,未退化和中度退化较低;(3)土壤蛋白酶活性与全氮、铵态氮和微生物量氮呈极显著正相关关系(P < 0.01),与硝态氮含量呈显著负相关关系(P < 0.05);硝酸还原酶活性与蛋白酶活性恰好相反;脲酶活性与微生物量氮含量呈极显著正相关关系(P < 0.01),与全氮含量呈显著正相关关系(P < 0.05);亚硝酸还原酶活性与全氮和铵态氮含量呈极显著正相关关系(P < 0.01),与硝态氮含量呈显著负相关关系(P < 0.05)。综上,在尕海湿地植被退化条件下,土壤氮组分含量增加可以有效提高相关酶活性。  相似文献   

20.
The nitrate reducing capacity of pure cultures of Cenococcum geophilum (Sow.) Ferd. & Winge, Paxillus involutes (Batsch: Fr.) Fr. (strains 1 and 2), Piloderma croceum Erikss. & Hjortst., Suillus variegatus (Fr.) O. Kuntze (strains 1 and 2) and an ectendomycorrhizal (E-strain) fungus was measured using an in vivo nitrate reductase (EC 1.6.6.3) assay. Differences between species and strains were established. The nitrate concentration of the culture medium influenced the nitrate reductase activities of the E-strain fungus and one strain of S. variegatus. The nitrate reductase activity of certain species and strains was a function of nitrate concentration. Addition of ammonium to the growth medium did not have any significant effect on the in vivo or in vitro nitrate reductase activity. The in vivo nitrate reductase activity in the mycelia of C. geophilum and the E-strain fungus decreased during 28 day growth in modified Melin-Norkrans medium. For mycelia of Paxillus involutus, Piloderma croceum and S. variegatus grown on agar the in vitro assays showed higher nitrate reductase activity than the in vivo assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号