首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laser-Raman spectra of crystalline d(CpGpCpGpCpG) and of aqueous poly(dG-dC).poly(dG-dC) in high salt (4M NaCl) and low salt (0.1M NaCl) solutions have been measured and compared. The spectra of the crystal and the high-salt solution show a striking congruence, which indicates clearly that the high-salt form of the aqueous polymer has the left-handed Z-DNA structure of the crystalline oligomer. These two spectra differ substantially from that of the low-salt form of the polymer, which has been found previously to have spectral characteristics of the B-form of DNA. The high salt spectrum shows a unique line due to guanine residues at 625 cm-1 which should be useful for qualitative and possibly quantitative assessment of the amount of Z-structure present in a sample of DNA.  相似文献   

2.
Immunization of rabbits with a complex of methylated bovine serum albumin and N-2-acetylaminofluorene (AAF)-modified poly(dG-dC) X poly(dG-dC), a polynucleotide that can assume the Z-DNA conformation, yielded several populations of antibodies specific for Z-DNA determinants. The Z-DNA determinants were analyzed by examination of the antisera and of antibody preparations purified on immunoadsorbents. The following was found: AAF-poly(dG-dC) X poly(dG-dC) shared Z-DNA determinants in common with poly(dG-dC) X poly(dG-dC) in 3.0 M NaCl, poly(dG-m5dC) X poly(dG-m5dC) in 1.5 M NaCl, and brominated poly(dG-dC) X poly(dG-dC) in 0.2, 1.5, and 3.0 M NaCl. Included among the antibodies induced by these determinants was a subpopulation whose reaction with brominated poly(dG-dC) X poly(dG-dC) was sensitive to increased ionic strength. Another distinct population of antibodies recognized determinants present on AAF-poly(dG-dC) X poly(dG-dC) but not on the other Z-DNAs. Only a small portion of this population was specific for the AAF moiety; the greater part appeared to recognize Z-DNA-associated conformational characteristics that were unique to AAF-poly(dG-dC) X poly(dG-dC). These findings are consistent with the existence of a continuum of Z-DNA determinants, which might be capable of functioning as recognition signals for regulatory DNA-binding proteins.  相似文献   

3.
The calculated phonon spectrum of Z-form poly(dG-dC).poly(dG-dC) between 400 and 1600 cm-1 is reported. Comparison with the available data shows the very good agreement between theory and experiment. The eigenvector displacement is used to assign the characteristics of some of the important modes.  相似文献   

4.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

5.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

6.
The conformation of poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), and calf thymus DNA modified with N-acetoxy-N-2-acetylaminofluorene (N-acetoxy-AAF) was examined by extent of reaction with anti cytidine antibodies. In contrast to modified poly(dG).poly(dC0 and DNA, modified poly(dG-dC).poly (dG-dC) failed to react with the antibodies indicating that the base pairing in this polymer is intact. This in consistent with induction of the Z-DNA conformation in AAF modified poly(dG-dC).poly(dG-dC). Using minimized potential energy calculations on the dCpdG-AAF dimer as a model for the modified polymer, it is shown that the proposed Z-DNA conformation is energetically stable. A model is proposed for an AAF modified tetramer, dGpdCpdGpdC, in which the AAF is external to the Z-DNA duplex.  相似文献   

7.
It was shown by circular dichroism that the B-Z transition of poly(dG-dC).poly(dG-dC) in high NaCl concentrations occurred more rapidly in the presence of formaldehyde and Tris. The product of formaldehyde and glycine interaction induces changes in the poly(dG-dC).poly(dG-dC) CD spectral characteristics of a 'B-like' conformation. It is supposed that the B-Z transition occurs without large-scale hydrogen bond breakage.  相似文献   

8.
A low-salt form of poly(dG-5M-dC).poly(dG-5M-dC)   总被引:4,自引:0,他引:4  
  相似文献   

9.
Poly (dG-dC) . poly(dG-dC) was modified by the reaction with N-acetoxy-N-acetyl-2-aminofluorene. The conformations of poly(dG-dC) . poly(dG-dC) and of poly d(G-C)AAF were studied by circular dichroism under various experimental conditions. In 95% ethanol, the two polynucleotides adopt the A-form. In 3.9 M LiCl, the transition B-form-C-form is observed with poly(dG-dC) . poly (dG-dC) but not with poly d(G-C)AAF. In 1 mM phosphate buffer, poly d(G-C)AAF behaves as a mixture of B- and Z-form, the relative percentages depending upon the amounts of modified bases. The percentage of Z-form is decreased by addition of EDTA and is increased by addition of Mg++. Spermine favors the Z-form in modified and unmodified polynucleotides. No defect in the double helix of poly d(G-C)AAF is detected by SI endonuclease.  相似文献   

10.
It is demonstrated that poly(dG-ethyl5dC) adopts Z form in low-salt solution like poly(dG-methyl5dC). Its existence is, however, not contingent on the presence of divalent cations in the polynucleotide solution. The Z form is transformed into B form below room temperature. The arising B form cannot be transformed back into Z form by millimolar MgCl2 concentrations. On the contrary, the addition of MgCl2 at room temperature converts the low-salt Z form of poly(dG-ethyl5dC) into B form. It follows from the results that Z form is a stable DNA conformation not only at high but even at low ionic strengths.  相似文献   

11.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The equilibrium binding of ethidium to poly(dG-dC) and poly(dG-m5dC) under conditions favoring B and Z forms was investigated with fluorescence-detected circular dichroism (FDCD) and optical titration methods. FDCD spectra indicate a similar geometry for the intercalated ethidium under both B- and Z-form conditions, even at low levels of bound ethidium. The magnitude of the 310-330-nm FDCD band as a function of the bound drug to base pair ratio (r) indicates ethidium binds to poly(dG-dC) in 4.4 M NaCl and to poly(dG-m5dC) in 25 mM MgCl2 by clustering. Under these conditions, circular dichroism spectra indicate the polymer is largely Z form. Thus, it appears ethidium clusters into regions it has induced into a right-handed form. For all conditions studied, the FDCD spectra provided no evidence for a left-handed binding site. Under B-form conditions, binding is random.  相似文献   

13.
PolyGC was titrated with a strong base in the presence of increasing concentrations of NaCl (from 0.00 to 0.60M) either in water solution or with the polynucleotide solubilized in the aqueous core of reverse micelles, i.e., the cationic quaternary water-in-oil microemulsion CTAB/n-hexane/n-pentanol/water. The results for matched samples in the two media were compared. CD and UV spectroscopies and, for the solution experiments, pH measurements were used to follow the course of deprotonation. In both media the primary effect of the addition of base was denaturation of the polynucleotide, reversible by back-titration with a strong acid. In solution, the apparent pK(a) of the transition decreases with increasing the salt concentration and a roughly linear dependence of pK(a) on p[NaCl] has been found. A parallel monotonic decay with ionic strength has been found in solution for R(OH), defined as the number of hydroxyl ions required per monomeric unit of polyGC to reach half-transition. By contrast, in microemulsion, R(OH) has been found to be independent of the NaCl concentration (and 10 to 50 times lower than in solution). This result is proposed as an indirect evidence of the independence of pK(a) on the salt concentration in microemulsion, where the pH cannot be measured. A sort of buffering effect of the positive charges on the micellar wall and of their counter-ions on the ionic strength could well explain this discrepancy of behavior in the two media.  相似文献   

14.
The conformational changes induced by the binding of cis-diamminedichloroplatinum(II) to poly(dG-dC).poly(dG-dC) have been studied by reaction with specific antibodies, by circular dichroism and 31P nuclear magnetic resonance. Polyclonal and monoclonal antibodies to Z-DNA bind to platinated poly(dG-dC).poly(dG-dC) at low and high ionic strength. Antibodies elicited in rabbits immunized with the platinated polynucleotide bind to double stranded polynucleotides known to adopt the Z-conformation. At low and high ionic strength the circular dichroism spectrum of platinated poly(dG-dC).poly(dG- dC) does not resemble that of poly(dG-dC).poly(dG-dC) (B or Z conformation). At low ionic strength, the characteristic 31P nuclear magnetic resonance spectrum of the Z-form is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

15.
The effect of basic oligopeptides (Lys-Ala-Ala)n (n = 1-5, 10) and (Lys-Leu-Ala)n (n = 1-4) on the B-Z transition of poly(dG-dC).poly(dG-dC) in water-methanol solutions was investigated using CD and uv spectroscopy. In the absence of peptides, the concentration of methanol at the midpoint of the B-Z transition is 64% at 25 degrees C. The transition is temperature dependent and the B conformation is preferred at higher temperatures. All peptides tested shift the midpoint of the B-Z transition to lower concentrations of methanol. For shorter peptides this effect increases with an increasing number of monomeric units, showing the importance of the number of positive charges in the peptide molecule. Al conditions of low methanol content, the trimer and tetramer of the (Lys-Leu-Ala)n series have a greater effect on the B-Z transition than the corresponding oligomers of the (Lys-Ala-Ala)n series. This indicates an important influence of the presence of hydrophobic groups in the peptide side chains on the binding. In the presence of peptides, the B-Z transition is also temperature dependent and the B conformation is preferred at higher temperatures. The addition of peptides results in an increase of the transition midpoint and of the transition width. These parameters were used for the calculation of the transition enthalpy delta HB-Z in 65% methanol, which is -1.15 +/- 0.25 kcal/base pair. Since the van't Hoff enthalpy delta HVH calculated from the temperature dependence of the B-Z transition in the absence of peptides is -130 kcal/mol, the length of the cooperative unit is about 110 base pairs. The results suggest that the mechanism of Z-DNA induction is similar but not identical with that involved in the action of metal cations in aqueous solution.  相似文献   

16.
The helix-helix transitions which occur in poly(dG-dC) · poly(dG-dC) and in poly (dG-m5dC) · poly(dG-m5dC) are commonly assumed to be changes between the right-handed A- or B-DNA double helices and the left-handed Z-DNA structure. The mechanisms for such transconformations are highly improbable, especially when they are supposed to be active in long polynucleotide chains organised in semicrystalline fibres. The present alternative possibility assumes that rather than the Z-DNA it is a right-handed double helix (S-DNA) which actually takes part in these form transitions. Two molecular models of this S form, in good agreement with X-ray measurements, are proposed. They present alternating C(2′)-endo and C(3′)-endo sugar puckering like the “alternating B-DNA” put forward some years ago. Dihedral angles, sets of atomic coordinates and stereo views of the two S-DNA structures are given, together with curves of calculated diffracted intensities. Furthermore, we question the possibility of obtaining semicrystalline fibres with triple helices of poly(dA) · 2poly(dT) in a way which renders X-ray diffraction efficient. It is suggested that, up to now, only double helices of poly(dA) · poly(dT) can actually be observed by fibre X-ray diffraction measurements. Received: 30 March 1999 / Revised version: 30 June 1999 / Accepted: 30 June 1999  相似文献   

17.
It was found recently that Hoechst 33258, a dsDNA fluorescent dye used in cytological studies, is an efficient inhibitor of the interaction of TATA-box-binding protein with DNA, DNA topoisomerase I, and DNA helicases. In addition it proved to be a radioprotector. Biological activity of Hoechst 33258 may be associated with dsDNA complexes of not only monomeric, but also dimeric type. In this work, the Hoechst 33258 interaction with poly(dG-dC).poly(dG-dC) was studied using UV-vis and fluorescent spectroscopy, circular and flow-type linear dichroism. It was found that Hoechst 33258 formed with poly(dG-dC).poly(dG-dC) complexes of three types, namely, monomeric, dimeric, and, apparently, tetrameric, and their spectral properties were studied. Complexes of monomeric and dimeric types competed with distamycin A, a minor groove ligand, for binding to poly(dG-dC).poly(dG-dC). We proposed that Hoechst 33258 both monomers and dimers form complexes of the external type with poly(dG-dC).poly(dG-dC) from the side of the minor groove.  相似文献   

18.
The enzymatic methylation of chemically alkylated DNA and of poly(dG-dC) X poly(dG-dC) by beef brain DNA(cytosine-5-)-methyltransferase have been tested. The alkylation by dimethylsulfate, which yields mostly 7 methylguanine (m7G) and 3 methyladenine (m3A) do not affect the enzymatic methylation. The dimethylsulfate alkylated poly(dG-dC) X poly(dG-dC) converted into the Z-form in the presence of MgCl2, is just as well methylated as the native or the alkylated polynucleotide in the B-form. The alkylation of DNA or of poly(dG-dC) X poly(dG-dC) by methylnitrosourea yields, in addition to the above base modifications described for dimethylsulfate, methylphosphotriesters and O6-methylguanine. The enzymatic methylation of these substrates modified by methylnitrosourea is decreased. This decrease is proportional to the extent of the chemical alkylation of the substrate.  相似文献   

19.
The secondary structures of poly(dG-dC).poly(dG-dC) in the presence of alcaline , alcaline earth and first row transition metal ions (Na+, Mg2+, Co2+, Ni2+) are investigated by infrared spectroscopy. The conformational transitions are studied as a function of the hydration of the polynucleotide and counter-ion nature and content. The use of selectively deuterated poly(dG-dC).poly(dG-dC) on the 8-carbon of guanines allows to show that a direct interaction occurs between the N7 site of guanines and the transition metal ions Co2+ and Ni2+. In the case of Mg2+, for high ion/nucleotide ratios, the interaction occurs essentially at the level of the phosphate groups. This interaction leads to a modification of the left-handed conformation. Based on the IR spectroscopy results, an explanation is proposed for the different efficiencies of these various ions to induce the B----Z transition.  相似文献   

20.
Poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) present helix-helix transitions which are commonly assumed to be changes between the right-handed A- or B-DNA double helices and the left-handed Z-DNA structure. The mechanisms for such transconformations are highly improbable especially when they are supposed to be active in long polynucleotide chains organised in semicrystalline fibres. The present alternative possibility assumes that rather than the Z-DNA it is a right-handed double helix (S-DNA) which actually takes part in these form transitions. Two molecular models of this S form, in good agreement with X-ray measurements, are proposed. They present alternating C(2')-endo and C(3')-endo sugar puckering. Dihedral angles, sets of atomic co-ordinates and stereo views of the two S-DNA structures are given together with curves of calculated diffracted intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号