首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effects of dichloroacetate, a known hypocholesterolemic agent, were studied in cultured growing and confluent human fibroblast cells. Microscopic examination showed no visible adverse effects of dichloroacetate on confluent cells during exposure to concentrations as high as 5 mM for 96 hr. Higher concentrations resulted in cell death after varying periods of incubation. There were no viable cells after 24 hr of exposure to 100 mM dichloroacetate. In contrast, much lower concentrations proved lethal to growing cells; cell growth, as determined by cell numbers at specified times after splitting, was suppressed by 1 mM dichloroacetate and 5 mM concentrations resulted in cell death. Similar effects were noted with glyoxylate. The hypocholesterolemic effect of dichloroacetate is probably not due to any effect on the low density lipoprotein pathway, since concentrations of up to 1 mM dichloroacetate did not affect the cellular binding and uptake of 125I-labeled low density lipoprotein. It is concluded that growing and rapidly metabolizing cells are much more sensitive to the toxic effects of dichloroacetate and glyoxylate than confluent cells.  相似文献   

2.
Enhanced efficiency of lactate removal after endurance training   总被引:1,自引:0,他引:1  
The effects of endurance training (running 1 h/day at 40 m/min, 10% grade) on net lactate removal at various lactate concentrations were assessed in resting rats by use of constant exogenous lactate infusion (0, 69.3, 123.6, and 175.0 mumol.kg-1.min-1). No consistent difference in resting lactate concentrations, 1.17 +/- 0.09 mM, was observed between control and trained animals with no exogenous infusion of lactate. With increasing lactate infusion rates, control animals demonstrated a twofold greater increase in blood lactate concentration (range 1.2-11.4 mM) compared with trained animals (range 1.0-5.5 mM). This response resulted from a more rapid rise in net lactate removal with changes in blood lactate concentration for trained animals. The estimated maximal reaction velocity for net lactate removal in trained animals was 19% lower than in control animals; however, the Michaelis-Menten constant was greater than 66% lower in trained animals (4 mM) compared with controls (12 mM). Control animals also demonstrated a twofold greater increase in lactate concentration as a function of the tracer-estimated lactate turnover. The ratio of 14CO2 yield to lactate specific activity as a function of total tracer removal was not significantly different between groups, suggesting that the relative contributions of oxidation and gluconeogenesis to lactate removal were similar for both groups. At blood concentrations greater than 1 mM, trained animals achieve higher rates of lactate removal for any given lactate concentration.  相似文献   

3.
Suppression of human tumor cell resistance to TRAIL-induced apoptosis in confluent cultures, using molecular target drugs (sorafenib and SAHA) at non-toxic concentrations was studied. Sorafenib, a multikinase inhibitor, and SAHA, an inhibitor of histone deacetylase, effectively suppressed resistance of confluent human cells derived from the skin carcinoma (A431 cell line) and fibrosarcoma (HT-1080 cell line). The effectiveness of suppression of confluent resistance with these inhibitors for human carcinoma A431 cells was significantly higher than that for the human ovarian carcinoma OVCAR-3 cells. For all cell lines studied, suppression of confluent resistance with SAHA was more effective than when sorafenib was used. The possible reason for increasing tumor cell resistance in confluent cultures and the importance of this phenomenon for understanding drug resistance of cells in the tumor tissue are discussed.  相似文献   

4.
The impact of intracellular glutathione depletion on chromosome damage induced by X irradiation under aerobic conditions was investigated in two different cell lines, Ehrlich ascites tumor cells (EATC) and Chinese hamster ovary cells (CHO-K1). Thiol-depleted cell cultures in plateau phase were obtained by prolonged incubation in growth medium containing DL-buthionine-SR-sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase. Cells were then assayed using the procedures of G. L. Ellmann (Arch. Biochem. Biophys. 82, 70-77 (1959)), F. Tietze (Anal. Biochem. 27, 502-522 (1969)), and J. Sedlack and R.H. Lindsay (Anal. Biochem. 25, 192-205 (1968)) for non-protein bound SH (NPSH), glutathione (GSH), and total SH (TSH). In both cell lines GSH was reduced to less than 10% of controls at higher BSO concentrations around 1 mM, whereas TSH and NPSH were affected to only 40-60%. In EATC pretreated with up to 1 mM BSO for 72 h, increased levels of spontaneously occurring micronuclei were found. At BSO concentrations above 200 microM, both cell lines showed a potentiation of chromosome lesions scored as micronuclei and induced under aerobic X irradiation when liquid holding recovery in the original nutrient-depleted medium was performed; the extent of chromosome damage eventually reached that which could be obtained by application of beta-arabinofuranosyladenine (beta-araA), known to inhibit DNA repair processes by blocking DNA polymerases. It is therefore suggested that GSH depletion causes impairment of repair of lesions leading to chromosome deletions and subsequently to micronuclei. In contrast to CHO cell cultures, EATC showed a reversion of the potentiation effect as indicated by a decrease in the micronucleus content during prolonged incubation in the presence of BSO in the millimolar range. This effect could not be correlated to the remaining GSH content of less than 10% but may be due to some accumulation of unknown NPSH components. Since addition of L-cysteine to EATC cultures pretreated with BSO decreased the micronucleus content, cysteine/cystine or a related thiol within the NPSH fraction may be involved in the reestablishment of repair. Thus at least in one cell line, a rather complex response to BSO administration indicated that not only GSH but also other thiols may determine the level of chromosome damage after liquid holding recovery.  相似文献   

5.
6.
The purpose of the present study was to use the microdialysis technique to determine skeletal muscle interstitial glucose and lactate concentrations during dynamic incremental exercise in humans. Microdialysis probes were inserted into the vastus lateralis muscle, and subjects performed knee extensor exercise at workloads of 10, 20, 30, 40, and 50 W. The in vivo probe recoveries determined at rest by the internal reference method for glucose and lactate were 28.7 +/- 2.5 and 32.0 +/- 2.7%, respectively. As exercise intensity increased, probe recovery also increased, and at the highest workload probe recovery for glucose (61.0 +/- 3.9%) and lactate (66. 3 +/- 3.6%) had more than doubled. At rest the interstitial glucose concentration (3.5 +/- 0.2 mM) was lower than both the arterial (5.6 +/- 0.2 mM) and venous (5.3 +/- 0.3 mM) plasma water glucose levels. The interstitial glucose levels remained lower (P < 0.05) than the arterial and venous plasma water glucose concentrations during exercise at all intensities and at 10, 20, 30, and 50 W, respectively. At rest the interstitial lactate concentration (2.5 +/- 0.2 mM) was higher (P < 0.05) than both the arterial (0.9 +/- 0. 2 mM) and venous (1.1 +/- 0.2 mM) plasma water lactate levels. This relationship was maintained (P < 0.05) during exercise at workloads of 10, 20, and 30 W. These data suggest that interstitial glucose delivery at rest is flow limited and that during exercise changes in the interstitial concentrations of glucose and lactate mirror the changes observed in the venous plasma water compartments. Furthermore, skeletal muscle contraction results in an increase in the diffusion coefficient of glucose and lactate within the interstitial space as reflected by an elevation in probe recovery during exercise.  相似文献   

7.
The effects of confluent holding recovery on survival, chromosomal aberrations, and progression through the life cycle after subculture of human diploid fibroblasts X-irradiated during density inhibition of growth have been examined. The responses of three normal strains were determined and compared with those of four ataxia-telangiectasia (AT), an AT heterozygote, and two hereditary retinoblastoma strains. The capacity for potentially lethal damage repair (PLDR) was slightly reduced in retinoblastoma cells and almost absent in AT cells, but normal in an AT heterozygote. The decline in chromosomal aberrations seen in normal cells during confluent holding was absent in AT cells, consistent with the lack of PLDR. Following subculture, all irradiated AT fibroblasts progressed through the cell cycle to the first mitosis with no delay. AT heterozygotic and retinoblastoma cells showed both an enhanced delay in the initiation of DNA synthesis and a large fraction of cells irreversibly blocked in G1 as compared with normal cells. Both the delayed entry into S and the G1 block were reduced by confluent holding. These results indicate that AT homozygotic and heterozygotic cells respond quite differently to X irradiation.  相似文献   

8.
The objective was to determine ovarian follicular fluid concentrations of glucose, lactate, and pyruvate in relation to follicle size in buffalo and sheep. The effect of varying concentrations of these substances on in vitro oocyte maturation, oocyte protein content, and granulosa and cumulus cell growth was also investigated. Follicular fluid was aspirated from various sizes of follicles (from ovaries without a dominant follicle) collected from adult, cycling nonpregnant buffalo (Bubalus bubalis) and sheep (Ovis aries) during the breeding season. Overall, mean (+/-S.E.M.) concentrations (mM) were glucose 2.42+/-0.31 and 1.40+/-0.22, lactate 7.56+/-2.61 and 10.42+/-1.64, and pyruvate 0.02+/-0.01 and 0.002+/-0.00, in buffalo and sheep, respectively. In both species, as follicles became larger, concentrations of glucose significantly increased, lactate significantly decreased, but pyruvate was not affected. Oocyte maturation was higher (P<0.05) in medium containing supra-physiological concentrations of either glucose (5 mM), or pyruvate (10 mM) alone, or physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub- or supra-physiological concentrations of glucose, lactate and pyruvate in combination (both species). The protein content of oocytes was not significantly affected by the concentration of glucose, lactate, and pyruvate in the maturation medium. However, growth of granulosa and cumulus cells was higher (P<0.05) in medium containing supra-physiological concentrations of glucose (5 mM) alone, or pyruvate (10 mM) alone, or physiological, or supra-physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub-physiological concentrations of glucose, lactate and pyruvate in combination (both species). In conclusion, concentrations of glucose, pyruvate and lactate in the medium had cell type-specific effects on oocyte maturation, and on growth of granulosa and cumulus cells. Furthermore, glucose and pyruvate were the principal energy sources for oocytes and follicular somatic cells in buffalo and sheep.  相似文献   

9.
The present study was undertaken to examine cell cycle characteristics of endangered Goral (CITES Appendix I) adult skin fibroblasts. Seven experiments were performed, each with a one-way completely randomized design involving three replicates. Least significant difference (LSD) was used to determine variation among treatment groups. Experiment I focused on the effects of cycling, serum-starved, and fully confluent stages of Goral cells. In Experiments II and III, the effects of different antioxidants like beta-mercaptoethanol (beta-ME, 10 microM), cysteine (2 mM), and glutathione (2 mM) were examined after cells were fully confluent without serum starvation for 24 h and 4 h, respectively. In Experiments IV and V, three protease inhibitors, namely 6-dimethylaminopurine (6-DMAP, 2 mM), cycloheximide (7.5 microg/ml) and cytochalasin B (7.5 microg/ml), were used as in Experiment II. In Experiments VI and VII, the effect of different levels of dimethylsulphoxide (DMSO) at 0%, 0.5%, 1.0% and 2.5% were tested by flow cytometry (FACS). In Experiment I, 68.7% of Goral skin fibroblasts reached the G(0)/G(1) stage (2C DNA content) when subjected to the serum-starved medium, which was more than the cycling (64.9%) and fully confluent groups (61.0%) (P > 0.05). Among the chemically treated group, beta-ME, cysteine and DMSO showed better results for synchronization of G(0) + G(1) phases than cycling, serum-starved and fully confluent groups. It can thus be concluded that beta-ME, cysteine and DMSO at certain concentrations can synchronize the cell cycle effectively, which could have a positive impact on somatic cell nuclear transfer in the goral.  相似文献   

10.
We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase.  相似文献   

11.
Energy metabolism in cultured human fibroblasts during aging in vitro   总被引:1,自引:0,他引:1  
To explore the relationship between energy metabolism and the limited replicative life span of cultured human fibroblasts, we studied several bioenergetic parameters in normal fibroblasts at early passage (young cells) and at late passage (old cells) and early passage cells from a subject with the Hutchinson-Gilford (progeria) syndrome. Old cells consumed more glucose and produced more lactate during growth, but O2 consumption, both basal and following maximum uncoupling of oxidative phosphorylation by SF-6847, was the same as in young cells. Progeria cells produced the most lactate but did not consume more glucose, while their basal and uncoupled O2 consumption was similar to that of young and old cells during both log and confluent states. Consumption of glutamine, a source of both oxidative energy and lactate, was approximately the same in all three cell types as was 14CO2 production from 2- 14C-pyruvate and 5- 14C-glutamate. ATP and ADP concentrations were similar in all cell types with a rise in the ATP/ADP ratio during growth from log to confluent state. Thus, old and progeria cells, in contrast to young cells, produce more lactate during growth consistent with a rise in energy demand and/or inefficiency of oxidative phosphorylation. Although limitations in total energy output do not appear to be causal to the loss of replicative capacity in normal cells after serial passage, they could play a role in the curtailed replicative capacity of progeria cells.  相似文献   

12.
Glucose has long been considered the substrate for energy metabolism in the retina. Recently, an alternative hypothesis (metabolic coupling) suggested that mitochondria in retinal neurons utilize preferentially the lactate produced specifically by Müller cells, the principal glial cell in the retina. These two views of retinal metabolism were examined using confluent cultures of photoreceptor cells, Müller cells, ganglion cells, and retinal pigment epithelial cells incubated in modified Dulbecco's minimal essential medium containing glucose or glucose and lactate. The photoreceptor and ganglion cells represented neural elements, and the Müller and pigment epithelial cells represented non-neural cells. The purpose of the present experiments was two-fold: (1) to determine whether lactate is a metabolic product or substrate in retinal cells, and (2) to examine the evidence that supports the two views of retinal energy metabolism. Measurements were made of lactic acid production, cellular ATP levels, and cellular morphology over 4 h. Results showed that all cell types incubated with 5 mM glucose produced lactate aerobically and anaerobically at linear rates, the anaerobic rate being 2-3-fold higher (Pasteur effect). Cells incubated with both 5 mM glucose and 10 mM lactate produced lactate aerobically and anaerobically at rates similar to those found when cells were incubated with glucose alone. Anaerobic ATP content in the cells was maintained at greater than 50% of the control, aerobic value, and cellular morphology was well preserved under all conditions. The results show that the cultured retinal cells produce lactate, even in the presence of a high starting ambient concentration of lactate. Thus, the net direction of the lactic dehydrogenase reaction is toward lactate formation rather than lactate utilization. It is concluded that retinal cells use glucose, and not glial derived lactate, as their major substrate.  相似文献   

13.
L-Lactate (4-32 mM) added exogenously to resting or depolarised rat forebrain synaptosomes led to a significant decrease in intrasynaptosomal pH. Similarly depolarisation-induced increases in intrasynaptosomal calcium, calcium uptake, and acetylcholine release were all inhibited. These effects mimicked those previously observed in synaptosomes under anoxic conditions and suggest that lactate may be involved in limiting the damage due to calcium accumulation occurring during ischaemia. D-Lactate (added exogenously up to 32 mM) did not produce similar effects on these parameters even though the concentrations of intrasynaptosomal D-lactate reached levels comparable to those obtained with L-lactate (at 8-16 mM exogenous concentration). The results suggest that the mechanism of action of lactate on these parameters is stereospecific for the L-enantiomer. The effect of glucose availability on lactate production was assessed to explore the role of substrate availability on ischaemia/anoxic events. When exogenous glucose was increased (10-60 mM), there was no further increase in lactate production in normoxic synaptosomes, which suggests that glucose is not limiting under these conditions. When glucose was removed, as may occur in complete ischaemia, there was a significant decrease in lactate production after 60 min under anoxic or normoxic conditions. It would seem likely therefore that the mechanism underlying the changes observed in synaptosomes incubated under conditions reflecting complete ischaemia does not involve lactate.  相似文献   

14.
These experiments were performed to determine the factor(s) that regulate lactic acid production and utilization by rat tumors in vivo. Arteriovenous differences for glucose and lactic, pyruvic, 3-OH-butyric, and acetoacetic acids were measured across "tissue-isolated" Walker 256 sarcocarcinomas and Morris 5123C hepatomas in fasted rats anesthetized with sodium pentobarbital. Twenty-six per cent of the sarcocarcinomas (n = 53) and 48% of the hepatomas (n = 29) utilized blood lactic acid. The remainder released lactic acid into the venous blood. The steady-state rate of glucose consumption was similar in both lactate-producing and lactate-utilizing tumors. The range of lactate concentrations in the blood leaving the tumors was narrower than the range of lactate concentrations in the blood entering the tumors. This difference was caused by tumor lactic acid production at low arterial lactate concentrations and tumor lactic acid utilization at high arterial lactate concentrations. Individual tumors changed from lactic acid production to lactic acid utilization in a matter of minutes in response to an increase in the arterial lactic acid concentration. Mean lactic plus pyruvic acid concentrations and lactic/pyruvic acid ratios in the tumor venous blood were 2.15 +/- 0.22 and 23.4 +/- 3.7 mM, respectively, for Walker sarcocarcinoma 256 (n = 18) and 1.28 +/- 0.13 and 48.1 +/- 5.1 mM, respectively, for hepatoma 5123C (n = 11). The results suggest: that a steady-state lactic plus pyruvic acid concentration and lactic/pyruvic acid ratio are maintained in the tumor cell cytoplasm by the active glycolytic pathway and by lactic acid dehydrogenase; that the tumor intracellular concentrations equilibrate with the arterial blood and that the tumor steady state is expressed in the tumor venous blood; and that tumor lactic acid production or utilization results from the equilibration between the variable arterial lactic acid concentration and the more constant tumor intracellular steady-state lactic acid concentration. Since the arterial lactate concentration may be less than, greater than, or equal to the intracellular steady-state concentration, an individual tumor may produce, utilize or neither produce nor utilize lactic acid.  相似文献   

15.
Streptococcus cremoris was grown in pH-regulated batch and continuous cultures with lactose as the energy source. During growth the magnitude and composition of the electrochemical proton gradient and the lactate concentration gradient were determined. The upper limit of the number of protons translocated with a lactate molecule during lactate excretion (the proton-lactate stoichiometry) was calculated from the magnitudes of the membrane potential, the transmembrane pH difference, and the lactate concentration gradient. In cells growing in continuous culture, a low lactate concentration gradient (an internal lactate concentration of 35 to 45 mM at an external lactate concentration of 25 mM) existed. The cell yield (Ymax lactose) increased with increasing growth pH. In batch culture at pH 6.34, a considerable lactate gradient (more than 60 mV) was present during the early stages of growth. As growth continued, the electrochemical proton gradient did not change significantly (from -100 to -110 mV), but the lactate gradient decreased gradually. The H+-lactate stoichiometry of the excretion process decreased from 1.5 to about 0.9. In nongrowing cells, the magnitude and composition of the electrochemical proton gradient was dependent on the external pH but not on the external lactate concentration (up to 50 mM). The magnitude of the lactate gradient was independent of the external pH but decreased greatly with increasing external lactate concentrations. At very low lactate concentrations, a lactate gradient of 100 mV existed, which decreased to about 40 mV at 50 mM external lactate. As a consequence, the proton-lactate stoichiometry decreased with increasing external concentrations of protons and lactate at pH 7.0 from 1 mM lactate to 1.1 at 50 mM lactate and at pH 5.5 from 1.4 at l mM lactate to 0.7 at 50 mM lactate. The data presented in this paper suggest that a decrease in external pH and an increase in external lactate concentration both result in lower proton-lactate stoichiometry values and therefore in a decrease of the generation of metabolic energy by the end product efflux process.  相似文献   

16.
Contrasting agents (CAs) that are administered to patients during magnetic resonance imaging to facilitate tumor identification are generally considered harmless. However, gadolinium (Gd) based contrast agents can be retained in the body, inflicting specific cell line cytotoxicity. We investigate the effect of Gadopentatic acid (Gd-DTPA) on human breast adenocarcinoma MCF-7 cells. These cells exhibit a toggle switch response: exposure to 0.1 and 1 mM concentrations of Gd-DTPA enhances proliferation, which is hindered at a higher 10 mM concentration. Proliferation is enhanced when cells transition to 3D morphologies in post confluent conditions. The proliferation dependence on the concentration of CA is absent for Hs 578T and MDA-MB-231 triple negative cell lines. MCF-7 cells reveal a double toggle switch related to the expression of VEGF, which goes through high–low–high downregulation when cells are exposed to 0.1, 1, and 10 mM Gd-DTPA, respectively. Finally, doxorubicin drug response is assessed, which also reveals a double toggle switch behavior, where drug cytotoxicity exhibits a nonlinear dependence on the CA concentration. A toggle switch in cell characteristics that are exposed to 1 mM of Gd-DTPA amplifies the importance of this threshold, affecting several cell behaviors if surpassed. This work emphasizes the important effects that CAs can have on cells, specifically Gd-DTPA on MCF-7 cells, and the implications for cell growth and drug response during clinical and synthetic biology procedures.  相似文献   

17.
This study investigated 1) red blood cells (RBC) rigidity and 2) lactate influxes into RBCs in endurance-trained athletes with and without exercise-induced hypoxemia (EIH). Nine EIH and six non-EIH subjects performed a submaximal steady-state exercise on a cyclo-ergometer at 60% of maximal aerobic power for 10 min, followed by 15 min at 85% of maximal aerobic power. At rest and at the end of exercise, arterialized blood was sampled for analysis of arterialized pressure in oxygen, and venous blood was drawn for analysis of plasma lactate concentrations and hemorheological parameters. Lactate influxes into RBCs were measured at three labeled [U-14C]lactate concentrations (1.6, 8.1, and 41 mM) on venous blood sampled at rest. The EIH subjects had higher maximal oxygen uptake than non-EIH (P < 0.05). Total lactate influx was significantly higher in RBCs from EIH compared with non-EIH subjects at 8.1 mM (1,498.1 +/- 87.8 vs. 1,035.9 +/- 114.8 nmol.ml(-1).min(-1); P < 0.05) and 41 mM (2,562.0 +/- 145.0 vs. 1,618.1 +/- 149.4 nmol.ml(-1).min(-1); P < 0.01). Monocarboxylate transporter-1-mediated lactate influx was also higher in EIH at 8.1 mM (P < 0.05) and 41 mM (P < 0.01). The drop in arterial oxygen partial pressure was negatively correlated with total lactate influx measured at 8.1 mM (r = -0.82, P < 0.05) and 41 mM (r = -0.84, P < 0.05) in the two groups together. Plasma lactate concentrations and hemorheological data were similar in the two groups at rest and at the end of exercise. The results showed higher monocarboxylate transporter-1-mediated lactate influx in the EIH subjects and suggested that EIH could modify lactate influx into erythrocyte. However, higher lactate influx in EIH subjects was not accompanied by an increase in RBC rigidity.  相似文献   

18.
Release of lactate was studied during in vitro incubations with isolated fat cells. Lactate release increased (approximately 3-fold) with increasing medium glucose concentration (from 3 to 12 mM) in both large and small fat cells. Large fat cells from older, fatter rats, however, released 3-4 times more lactate per cell than small fat cells from young rats when incubated with 3, 6 or 12 mM glucose. Insulin and epinephrine produced a marked stimulation of lactate release in small fat cells, but these hormones had no effect in large fat cells. Lactate accounted for only 10-15% of the glucose metabolized by small fat cells under all incubation conditions but was nearly 40% of glucose utilized by large fat cells at glucose concentrations greater than 6 mM. In conclusion, lactate is a major metabolite of glucose in adipocytes, particularly in the large fat cells. Adipose tissue may therefore be a major site of lactate production, particularly in states of altered glucose metabolism (i.e., hyperglycemia) and obesity.  相似文献   

19.
The ATP content of pachytene spermatocytes and round spermatids, isolated from rat testes, was not maintained during incubation of the germ cells in the presence of glucose. Glucose was metabolized via glycolysis at a considerable rate, but the rate of oxidation of the resulting endogenous pyruvate in the mitochondria was too low to support fully ATP production. Exogenous pyruvate (0.25 mM) or exogenous l-lactate (3–6 mM), however, were effective energy substrates. The lactate dehydrogenase reaction in isolated germ cells favoured the rapid conversion of pyruvate to lactate, at the expense of reducing equivalents from mitochondrial NADH. Hence, to support ATP production by the germ cells via mitochondrial metabolism of endogenous pyruvate, a relatively high concentration of exogenous lactate may be essential. In the spermatogenic microenvironment in vivo, such high concentrations of lactate could result from the net production of lactate by Sertoli cells. The mitochondria of the isolated germ cells produced ATP probably at a close to maximal rate, and spermatogenesis therefore may be extremely sensitive to compounds which interfere with mitochondrial energy metabolism and respiratory control.  相似文献   

20.
We have studied the effect of cell density on the lateral diffusion of major histocompatibility (MHC) antigens in the plasma membranes of fibroblasts using fluorescence recovery after photobleaching. The percent recovery of fluorescence was decreased in fibroblasts grown in confluent cultures. While recovery of fluorescence was measurable in greater than 90% of the cells from sparse cultures, measurable recovery was detected in only 60-80% of the cells from dense cultures; no mobile antigens were detectable in 20-40% of cells examined. The diffusion coefficient on human skin fibroblast cells that did show recovery was the same for cells grown in sparse or dense conditions. In WI-38, VA-2, and c1 1d cultures the diffusion coefficients of mobile antigens were smaller in cells from dense cultures. Changes in lateral diffusion occurred with increased cell-cell contact and with age of cell culture but were not observed in growth-arrested cells or in sparse cells cultured in medium conditioned by confluent cells. Decreased mobile fractions of MHC antigens were observed when cells were plated on extracellular matrix materials derived from confluent cultures. Treatment of the extracellular matrix materials with a combination of proteolytic enzymes or by enzymes that degrade proteoglycans abolished this effect. Matrices produced by cells from other cell lines were less effective in inducing changes in mobile fractions and purified matrix components alone did not induce changes in lateral diffusion. Finally, there were no differences in the proportion of MHC antigens that were resistant to Triton X-100 extraction in sparse and dense cells. These results suggest that cell-cell interactions mediated through extracellular matrix materials can influence the lateral diffusion of at least part of the population of MHC antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号